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We aim to solve the problem forming multiagent coalitions in uncertain environments

where the coalition members’ capability of solving tasks change due to their learning. The

MCFP-M problem for the agents refers to forming or joining coalitions on behalf of a set of

human users so that those human users can solve tasks and improve their types (expertise) to

improve their performances over time. MCFP-A problem for a set of agents refers to their

forming or joining coalitions so that they are able to solve a set of assigned tasks while

optimize their performance over time. We propose the Integrated Human Coalition For-

mation and Scaffolding (iHUCOFS) framework for solving MCFP-M. iHUCOFS agents

balance the tradeoff between solving the current task well and improving the human users’

types to solve future tasks better by facilitating learning and teaching. We have verified

iHUCOFS’ assumptions using simulation experiments and implemented the framework in

ClassroomWiki–a Wiki environment for collaborative learning. Our deployment results

show that iHUCOFS’ agents can model the students accurately and form student groups to

enhance collaboration and learning. We have proposed the Agents’ Dyadic Learning In-

fluenced Tradeoff (ADLIT) framework that consists of a coalition formation protocol and

approximation strategies to solve MCFP-A. ADLIT agents can form coalition to solve the

current task well and improve their performance over time by improving their types with

learning. Our empirical studies show that the ADLIT agents’ local learning interactions

lead to a scalable and robust mechanism for improvement in the long term.
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Chapter 1

Introduction

Multiagent coalition formation is a process that allows a set of agents to work together

to solve tasks that they cannot solve themselves alone effectively and efficiently. Here

effectiveness refers to an agent’s ability to solve a task well i.e., generate a solution for a

task with high quality. Furthermore, efficiency denotes the reward-to-effort ratio incurred

by the agents who solve a task. Multiagent coalition formation techniques can be used

to solve a variety of real-world problems, e.g., task allocation (Shehory and Kraus, 1995),

bargain buying in business transactions (Yamamoto and Sycara, 2001), and forming student

groups in computer-supported collaborative learning environments (Vassileva et al., 2003).

In our research, we aim to solve a problem that we call the Multiagent Coalition Formation

Problem or MCFP where a set of agents form coalitions in an uncertain environment and

their types (i.e., the agents ability to solve tasks) change (positively or negatively) over time

due to their learning interactions with other agents. Furthermore, if we consider human

users as intelligent agents capable of making autonomous agents, MCFP can be extended

to a variety of real world problems that involve forming human coalitions.

Consider a set of students in a classroom who are about to work together in teams or

coalitions on an assignment (e.g., design a software) to earn some reward (e.g., grade). This

upcoming assignment includes a set of subtasks (e.g., coding, interface design) which are
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to be solved by the members. From their previous experience, the students know their own

capabilities (i.e., the nature of the subtasks he/she can solve) and their expertise of solving

those subtasks (i.e., how well they can solve the subtasks). This expertise of the student

members in solving the subtasks as well as other uncertain factors (e.g., a coalition mem-

ber falling ill) determines how well a coalition of students is able to solve the upcoming

assignment. In addition, since solving the problems involved in the assignment requires

interactions among the members of a coalition, it is possible that the coalition members

would be able to learn from one another and as a result would learn new capabilities and/or

change their expertise (increase or decrease) related to those capabilities. This change in

the students’ capabilities and expertise has the potential to impact the performance of the

coalitions they form in the long term (i.e., future assignments after this upcoming assign-

ment). The students in this class are thus faced with the following problem:

Which coalition should I form that would allow me to solve this new assign-

ment well to earn rewards and to learn new capabilities or gain expertise to

solve future assignments better, leading to a better overall course grade?

This coalition formation problem has the following distinct characteristics:

• If we denote a student’s capabilities and the associated expertise as that student’s

type, the types of the coalition members help determine how well they are able to

solve a problem and thus their rewards.

• A student can learn by interacting with other students and the students’ types may

change (positively or negatively) due to their learning.

• There is a tradeoff between the current task and future task rewards. A coalition that

provides the maximal reward now (short term) may not provide the optimal learning

opportunities that would result in the type changes that could lead to better future

task rewards (long term) and vice versa.
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• The environment in which the students operate is uncertain. The uncertainty in the

environment arises from the fact that: (1) the quality of the solution of a task solved

by a coalition and (2) the type change that can be achieved by an agent by learning

cannot be accurately calculated beforehand but only estimated.

One way we can solve this coalition formation problem is by using a set of intelligent

agents who would find the right coalition for the students. In this case, the agents work

as mediators for the human users to form coalitions for a chosen task where the human

users become the actors to solve that chosen task. We thus define this coalition formation

problem as MCFP-M coalition formation subproblem under MCFP as:

MCFP-M - The MCFP-M coalition formation problem for the mediator agents

refers to forming or joining a coalition for the participating actor agents or

human users (who they represent) such that those actor agents are able to solve

the chosen task effectively and efficiently and optimally improve their types

over time.1

Similar to MCFP-M, there are several multiagent coalition formation scenarios where

the agents form coalitions in an uncertain environment to solve tasks and the agents’ type

(skills, knowledge, etc.) can change because of their learning interactions with other agents

in the environment. Examples of this type of coalition formation can be found in electronic

marketplaces (Lerman and Shehory, 2000), trust-based coalition formations (Griffiths and

Luck, 2003), etc. All of the distinct characteristics of MCFP-M also exist in these coalition

formation problems but with the difference that the agents themselves now act in the coali-

tions in MCFP-A. We define the agents’ coalition formation in the uncertain environments

with type-changing influences as the MCFP-A subproblem under MCFP as:

1Notice that, in our definition of the MCFP-M, we use the term “actor agents” to denote “human users”.
That is because, in our agent-mediated coalition formation problem, we assume human users as agents who
are able to perceive the environment and take autonomous actions and who employ other agents as mediators
to find the right coalition for them.
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MCFP-A - The MCFP-A coalition formation problem for the actor agents

refers to forming or joining coalitions so that they are able to solve the current

tasks effectively and efficiently and optimally improve their types over time.

Comparing the coalition formation problem for the actor agents and the coalition forma-

tion problem for the mediator agents, we see that there are significant differences between

these two subproblems which require different approaches while we design the solutions

for them. The three main categories of differences are:

• Control - Since the agents who form coalitions cannot act in them in the mediator-

formed coalition formation problems, the mediating agents have less control over

how the actors would behave once they join the coalition. This lack of control leads

to additional uncertainties in the mediator agents’ coalition formation- and learning-

related decision making process.

• Interactions & Type Change - Unlike the agent-actor case, the interactions in the

agent-mediator coalition formation problems occur among the agents who do not

form coalitions. As a result, the mediators who make the coalition-forming, or learn-

ing decisions experience additional tracking and modeling responsibilities that are

not incurred by the coalition-forming actors in the agent-actor-based coalition for-

mation problems.

• Imposed Constraints - If the perceptions or goals of the actor and the mediator

agents are different, that difference may often impose a set of constraints on the

coalition-forming mediators. As a result, the mediators would have to accommodate

those imposed constraints in its learning and coalition formation process.

Due to these significant differences, the critical issues in a multiagent coalition forma-

tion problem, e.g., reward distribution scheme and social welfare (Sandholm et al., 1999),
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would have to be accommodated in the agent reasoning process differently in the MCFP-

A and MCFP-M problems. Our division of MCFP into two subproblems will allow us to

design separate solutions that cater to the specific needs of each of the subproblems.

1.1 Motivation

The motivation for solving the MCFP arises from its potential of providing us critical in-

sights into the various real-world coalition formation problems in uncertain environments

with type-changing influences. These insights can then be used to understand our lim-

itations (e.g., the computational complexities) in solving those problems and to design

frameworks and algorithms that improve the state of the art of the solution techniques of

such problems. Due to their ability to communicate, cooperate, and make autonomous

decisions, multi-agent systems are gaining popularity as a tool for designing real-world

software solutions (Fischer et al., 2007). Many of those real-world problems e.g., task

allocation, bargain buying in business transactions, resource allocation, and human coali-

tion formation require formation of coalitions in uncertain environments where the types

or capabilities of the actors change as they collaborate with their coalition members. One

way these real-world coalition formation problems can be solved is by mapping them onto

our multiagent coalition formation subproblems (MCFP-A, MCFP-M) and then by using

our developed solution techniques. For example, the buyer coalition formation problem

where buyer coalitions are acting together to buy bulk items together over the internet can

be mapped to MCFP-A. In this case, the agents forming the coalitions are the actors, they

form coalitions in an uncertain environment since the availability of an agent with specific

type (defined by buying need and capability) for a specific coalitional buying action is not

guaranteed, and as the agents successfully negotiate bulk buying deals and make profits,

their capability as a buyer (e.g., the amount of capital they have) is likely to increase i.e.,

their types will change over time. Furthermore, the student coalition formation problem in
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collaborative learning environments can be mapped onto MCFP-M, where the uncertainty

in the environment arises from, (1) the agents’ limited observability - the agents forming

student coalitions cannot observe all interactions of the students in the environment and

(2) the inherent inaccuracy in measuring students’ attributes that define their types - i.e.,

the inaccuracy in the measurement of students’ attributes using tests or surveys (Cortina,

1993). Also, the participating students’ types (e.g., knowledge and ability to solve prob-

lems) change due to their interactions with their coalition members.

Analyzing the state of the art of MCFP-M type coalition formation problems, i.e.,

problems where the agents mediate the coalitions formed by human users, we see that re-

searchers have tried a number of different solution approaches. For example, (1) Gogoulou

et al. (2007), Christos and Kyparisia (2007) and Graf and Bekele (2006) used optimiza-

tion algorithms to form student groups, (2) Diebel (2005) used educational heuristics to

form student groups, (3) Greer et al. (2001) used a multiagent system to match learners

(i.e., two-member coalitions) who need help with other knowledgeable peers, and (4) Pe-

choucek et al. (2002) used a multiagent system to form coalitions of relief organizations

to aid in the disaster management scenario. However, these coalition formation research

approaches do not accommodate the fact that the human actors in real-world coalition for-

mation scenarios work in an uncertain environment where the measured attribute values are

not accurate (i.e., the values vary due to unmeasured environmental factors (Cortina, 1993))

and the impact of those attributes on the effectiveness and efficiency of a coalition may not

be accurately identified but can only be estimated through tracking and modeling. As a

result, these coalition formation techniques often rely on manually specified and fixed (i.e.,

not learning enabled) coalition formation strategies. So, a multiagent coalition formation

framework that uses agent-mediated coalition formation techniques and is able to learn (1)

the models of the actors (i.e., the students in this case) and (2) the probabilistic mapping

of those models on the effectiveness and efficiency of the coalitions would be able to form

better coalitions that optimize their effectiveness and efficiency for a set of future tasks by
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improving the types of the participating actors.

Furthermore, a variety of real-world coalition formation problems occur in uncertain

environments with type-changing influences, but the current state of the art of multiagent

coalition formation techniques that are designed to be applied in the real world do not ade-

quately accommodate the uncertainty and the type-changing influences in the environment

into account. For example, Shehory and Kraus (1995); Yamamoto and Sycara (2001);

Tsvetovat and Sycara (2000); Klusch and Gerber (2002); Pechoucek et al. (2002); Soh

and Li (2003); Cornforth et al. (2004); Huhns et al. (2005); and Kiam et al. (2007) do not

consider the uncertainty in the environment. Furthermore, the recently published coali-

tion formation research approaches that do take the environmental uncertainty into account

to form coalitions e.g., Kraus et al. (2003); Chalkiadakis and Boutilier (2004); Hosam and

Khaldoun (2006); Chalkiadakis (2007) do not adequately exploit the agents’ type-changing

influences into account in their framework or solution approach. For example, the agents in

the solutions proposed in (Kraus et al., 2003); (Chalkiadakis and Boutilier, 2004); (Hosam

and Khaldoun, 2006); (Chalkiadakis, 2007) do not consider the impact of an agent in-

fluencing type changes in its coalition members by learning actions. Due to the necessary

collaboration of the agents in the coalition formation problems, if an agent is able to collab-

orate again with its current coalition’s members in future, a positive type change in those

members’ types can potentially improve that agent’s performances significantly. So, our

discussions indicate that there is a need for multiagent coalition formation techniques that

can take the uncertainty in the environment and the type-changing influences into account

to form effective and efficient coalitions for MCFP-A and MCFP-M coalitions.

To summarize, applying the solution techniques of MCFP-A and MCFP-M on these

problems would allow us to (1) understand the theoretical limitations of finding such coali-

tion formation problems, (2) solve the real-world coalition formation problems that are

being solved using other existing techniques, and (3) apply the devised solution techniques

to solve important but yet to be automatically solved real-world coalition formation prob-
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lems e.g., businesses forming coalitions to improve their earnings or to solve difficult tasks

((Khanna and Yafeh, 2007); (Iacobucci and Rosa, 2005)) and political coalition formation

to pass legislature (Kreppel and Tsebelis, 1999)) well.

1.2 Solution Approach

To solve MCFP-M, we propose the Integrated Human Coalition Formation and Scaffolding

Framework (iHUCOFS). iHUCOFS is a multiagent-based coalition formation framework

in which a set of intelligent agents assist a set of human users form coalitions and help

(scaffold) those human users to optimize their effectiveness and efficiency in the coalitions

over a set of tasks. The iHUCOFS framework is designed to form and scaffold coalitions,

trading off expected utility of solving the current task and the potential utility of better

coalitions in the future in the hope that such sacrifices in the present would yield positive

type changes in the participating human users so that they are able to earn better rewards in

the future.

We have realized iHUCOFS (Figure 1.1) in two different multiagent instantiations that

solve the MCFP-M for student coalition formation in the collaborative learning domain.

Our first instantiation of iHUCOFS is an educational heuristic-based coalition formation

algorithm called VALCAM Vickrey Auction-Based Learning Enabled Coalition Forma-

tion Algorithm (VALCAM) that improves student learning by forming competent student

groups with students who are also compatible. VALCAM has been implemented in the

asynchronous CSCL (Computer-Supported Collaborative Learning) tool I-MINDS. Al-

though VALCAM’s implementation in the asynchronous version of I-MINDS is a signif-

icant part of our iHUCOFS framework, we are not going to discuss its design or imple-

mentation in I-MINDS in this dissertation. For a summary of our achievements regarding

VALCAM and its implementation in the asynchronous version of I-MINDS, see (Khan-

daker and Soh, 2011b; Khandaker et al., 2011).
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To understand the validity and implications of iHUCOFS framework, we have designed

SimCoL (Khandaker and Soh, 2010d) - a simulation environment in which a set of agents,

guided by the published collaborative learning theories and observations, mimic the collab-

orative learning interactions of the students in a classroom. SimCoL allows us to conduct

low-cost replicable experiments that can be used to validate the assumptions and test the

impact of our group formation techniques.

One deficiency of VALCAM is that it primarily relies on provided heuristics to form

student coalitions. To improve our instantiation of iHUCOFS for solving student coalition

formation problems in collaborative learning environments, we have designed and imple-

mented MHCF (Multiagent Human Coalition Formation) algorithm. In MHCF, agents

work as mediators for the students and use a negotiation-based coalition formation algo-

rithm to form student coalitions. The novelty of MHCF lies in its multiagent-based mul-

tidimensional modeling of the participating students and its probabilistic modeling of the

environment that allows it to learn to form effective and efficient coalitions that: (1) im-

prove the current-task performance of the students and (2) improve the behavior of the

students through learning so that, they are able to earn higher rewards for future tasks.

To solve MCFP-A, our proposed ADLIT framework allows an agent to make a series of

sequentially rational (Chalkiadakis and Boutilier, 2008) decisions to improve the tradeoff

between the current task and future task to maximize its rewards over time with respect

to its type. In our design and implementation of ADLIT, we formulate the type change of

the agents as a Partially Observable Markov Decision Process (Kaelbling et al., 1998) and

design a coalition formation protocol and approximation strategies. The coalition formation

protocol specifies how a set of agents coordinate among themselves to pick (1) the types of

the members for their coalition and (2) the implicit and explicit learning actions for their

coalitions. In the coalition formation protocol, the agents have to evaluate the different

coalition formation proposals presented to them in the light of the environment uncertainty

and openness. Since the exact evaluation of a coalition in terms of the current task vs.
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Figure 1.1: Problem-Solution Framework

future task reward tradeoff under partial observability and uncertainty is computationally

intractable (Chalkiadakis, 2007), we have designed three approximation strategies. First,

in the Myopic Current Task (MCT) strategy, the agents reasoning focus only on the current

task reward without making deliberate effort towards improving their types through implicit

and explicit learning. Second, in the One-Step Lookahead (OSL), the agents look ahead

into the next round of the repeated coalition formation process to approximate the future-

task reward gain in addition to considering current task rewards. Finally, as an improvement

over our One-Step Lookahead, in the Learning by Exploration (LEA) method, the agents

use a simulated annealing (Russel and Norvig, 2003, p. 115) approach to improve their

choice of learning actions by balancing its exploration and exploitation.

1.3 Contributions

Our research work contributes to the advancements of the solution techniques for the of

multiagent coalition formation problems in uncertain environments with type-changing in-
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fluences. To be specific, we have designed and implemented the following (Figure 1.2):

Figure 1.2: Implementation of Our Solution

• iHUCOFS: We have designed iHUCOFS (Soh and Khandaker, 2007; Khandaker

and Soh, 2008)—a framework that describes the MCFP-M with a set of assumptions

and provides design principles for solving MCFP-M effectively. We have instanti-

ated iHUCOFS using two algorithms - VALCAM and MHCF and designed and im-

plemented the Simulation Tool for Collaborative Learning (SimCoL) - a multiagent

toolkit that simulates the interactions of the actors and mediators in the iHUCOFS

environment.

- VALCAM: VALCAM: According to the principles described in iHUCOFS, we

have designed the VALCAM algorithm (Soh, Khandaker, Liu and Jiang, 2006;

Soh and Khandaker, 2007; Khandaker et al., 2011; Soh, Khandaker and Jiang,

2006; Khandaker et al., 2006; Soh et al., 2008; Khandaker and Soh, 2011b)

and investigated its impact by implementing it in the asynchronous version of

I-MINDS (Intelligent Multiagent Infrastructure for Distributed Systems in Edu-

cation) (Khandaker and Soh, 2011b; Khandaker et al., 2011). Our studies show
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that VALCAM is able to improve student learning and performances by forming

heterogeneous student groups that contain competent and compatible students.

- SimCoL: While designing iHUCOFS framework, we wanted to understand the

role of competence and compatibility on the collaborative learning outcome of

the students. Considering the high time and cost requirements of conducting

experiments with human subjects, we have designed and implemented SimCoL

(Khandaker and Soh, 2010d)—a multiagent tool for simulating student learn-

ing interactions in a CSCL environments. SimCoL uses a set of observations

and theories published in the collaborative learning research domain (Shell and

Brooks, 2007) to simulate the student-student and student-teacher interactions

in a CSCL classroom. The analysis of the results of our conducted simulation

experiments (Khandaker and Soh, 2010d) shows that SimCoL is able to very

closely portray the collaborative learning behavior of the students in a CSCL

classroom.

- MHCF: To improve upon the design of the VALCAM algorithm, we have de-

signed the MHCF algorithm that uses a negotiation-based multiagent coalition

formation algorithm and a Bayesian network (Cowell, 1998, pp. 9-27) to learn

the composition of student groups that would allow the members to solve the

current task well as well as improve their behavior to earn higher rewards for fu-

ture tasks. To investigate the impact of MHCF algorithm, we have designed and

implemented ClassroomWiki—a multiagent-based asynchronous online Wiki

environment.

* ClassroomWiki: In ClassroomWiki (Khandaker and Soh, 2010e,a,c; Khan-

daker et al., 2011), the students are able to collaboratively prepare Wikis

on teacher-assigned topics where the mediator intelligent agents track and

model their learning behavior and activities. The mediator agents then

use a negotiation-based algorithm and a Bayesian network to form stu-
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dent groups that allow the students to solve the current-task reward and

improve the current task rewards for the future tasks as well. We have

conducted experiments in several courses at the University of Nebraska-

Lincoln, where the students collaborated using ClassroomWiki to collab-

oratively create Wikis on teacher-assigned topics and the ClassroomWiki

agents used MHCF to form student groups. The analysis of the results of

our two semester-long experiments indicate that the MHCF-formed groups

allowed the participants to solve the teacher-assigned tasks effectively as

well as helped them improve their behavior to increase their effectiveness

and efficiency over time.

• MCFP-A: We have designed ADLIT (Khandaker and Soh, 2011a)—a multiagent

coalition formation framework for forming agent coalitions in an uncertain environ-

ment for agent actor cases with type-changing influences. While designing ADLIT,

we have provided the necessary theoretical formulations to design a stable coalition

formation protocol and two approximation algorithms (OSL and LEA) that allow the

agents to improve their rewards by improving their current-task and future-task re-

ward tradeoff. To test our design of the ADLIT framework, we have implemented

it in Repast (Repast, 2009)—a multiagent simulation toolkit. The analysis of the re-

sults of our experiment in Repast shows that ADLIT improves the effectiveness and

efficiency by exploiting the optimal current-task vs. future-task reward tradeoffs.

- To the best of our knowledge, the ADLIT framework is the first that we know of

that utilizes observations reported by researchers working in the human learning

domain to strengthen the agents’ decision-making process in multiagent coali-

tion formation scenarios. Furthermore, current multiagent systems literature

has mostly focused on how agents learn from each other when they interact or

negotiate or collaborate (Chalkiadakis, 2007; Kraus et al., 2003; Chan and Le-
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ung, 2008; Tsvetovat and Sycara, 2000; Klusch and Gerber, 2002; Kraus et al.,

2004) but not on what learning can do to an agent’s type when forming or join-

ing a coalition, and parlaying that into the future. Our solution, on the other

hand, integrally considers that, allowing agents to maximize their performance

with respect to their type over time.

- We also consider the tradeoff balancing the current task and future task rewards.

Though this tradeoff is not new, embedding the agents’ learning influence into

the process is. Here, that influence allows the agents to more comprehensively

model their current task rewards and more accurately estimate their future task

rewards. On the implementation viability side, since we have to deal with the

uncertainty, openness, and partial observability, we also propose approximation

strategies to lessen the computational burden on the agents. Our three sets of re-

ported empirical analyses also provide insights into how the ADLIT framework

behaves and adapts to changes in the multiagent environment. Other contri-

butions of our research regarding MCFP-A include the Repast-based software

implementation of the MCFP-A simulation and empirical data.

1.4 Outline

The rest of this dissertation organized as follows: first, in Chapter 2, we describe the re-

cently published research works related to the solutions of MCFP-A and MCFP-M to mo-

tivate the need for a better solution approach to both of them. In Chapter 3, we present the

iHUCOFS framework with a set of observations and assumptions that provide a guideline

for developing algorithms for solving the MCFP-M problem and discuss our implementa-

tion of the iHUCOFS framework in the negotiation-based MHCF algorithm. In Chapter 4,

we describe the design and implementation of SimCoL—a multiagent-based simulation

environment for simulating the student activities in the computer-supported collaborative
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learning classroom. In Chapter 5, we discuss our implementation of MHCF algorithm in

ClassroomWiki - a multiagent- and web-based collaborative Wiki tool for classroom use.

Chapter 6, discusses the ADLIT framework for multiagent coalition formation that is de-

signed to solve the MCFP-A problem and presents the results of our experiments. Finally,

Chapter 7 concludes and discusses the future directions of the continuations of our work.
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Related Work

In this chapter, we discuss the research works related to the the MCFP-A and the MCFP-M

subproblems. First, in Section 2.1, we informally define the environments of our MCFP-A

and MCFP-M problems, and from those definitions, identify critical aspects of our prob-

lems that distinguish our research approach from the other coalition formation research

approaches. In Section 2.2, we discuss the problems addressed by the agent-mediated

coalition formation research approaches in a variety of domains (e.g., collaborative learn-

ing, business), summarize their solutions, and discuss how our solution approach may better

solve the MCFP-M problem. In Section 2.3, we summarize the problems addressed by the

agent-acted coalition formation research approaches, present their solutions, and discuss

how our solution approach is required to better solve the MCFP-A subproblem.

2.1 Critical Aspects & Problem Environment

As discussed in the definitions of our problems MCFP-A and MCFP-M in Section 1, we

aim to solve the multiagent coalition formation problem in an uncertain environment with

type-changing influences. To identify the critical aspects that define our problems and

guide our solution approaches, we informally define the MCFP-M environment (see Sec-

tion 3.3.2 for a formal definition) and the MCFP-A environment (see Section 6.1 for a
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formal definition) as the following:

MCFP-M Environment—We assume that we have a set of actor agents and a set of

mediator agents who need to form coalitions to solve a set of tasks. The mediator agents

work as assistants to the actor agents and help them form coalitions for the tasks the actor

agents would like to solve. Once the actor agents join their respective coalitions for a task,

they interact (e.g., communicate, learn, scaffold) with their coalition members to solve

that chosen task. The types of the coalition members determine (1) the cost they incur

while solving the task, (2) the quality of solution they are able to produce through their

interactions, and (3) the change (positive or negative) in their types they are able to achieve

through their interactions.

MCFP-A Environment—We assume that we have a set of actor agents who need to

form coalitions to solve a set of tasks. The tasks require the expertise of the actor agents

where the expertise of an agent is determined by its type. Once the actor agents join their

respective coalitions for a task, they interact (e.g., communicate, learn, teach) with their

coalition members to solve that chosen task. The types of the coalition members determine

(1) the cost they incur while solving the task, (2) the quality of solution they are able to

produce through their interactions, and (3) the change (positive or negative) in their types

they are able to achieve through their interactions.

Notice that, the uncertainty faced by the actor and mediator agents during the coalition

formation process in MCFP-A and MCFP-M environments arises from the agents’ incom-

plete information about (1) the impact of a coalition members’ types on the effectiveness

and efficiency of that coalitions and (2) the impact of a set of learning and scaffolding

interactions on the types of the interacting members of a coalition.

The uncertainty and the type change in the environment are related to the following

critical aspects that need to be accommodated to produce effective and efficient solutions

of the MCFP-A and the MCFP-M problem:

• Uncertainty of Coalitional Outcome (ca1)—Since the environment is uncertain,
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the effectiveness and efficiency of a potential coalition according to its members’

types cannot be accurately calculated, but only estimated. As a result, during coali-

tion formation, the agents need to learn or model the type-related uncertainty in the

environment and use its learned uncertainty values to choose the most effective and

efficient coalition that it can. That implies, to improve its decision-making ability

over time, an agent needs to probabilistically explore its environment by learning or

refining its estimate of the type-related uncertainties and exploit what it knows by

joining the most effective and efficient coalition.

• Tradeoffs Associated with Type-Change (ca2)—In the MCFP-A and the MCFP-

M environments, the agents are able to change the types of their own and the types

of their coalition members through learning interactions. So, if the actor agents in

MCFP-A and the mediator agents in MCFP-M are able to learn the dynamics of type

change, they could improve the performances of the coalitions further by exploiting

the current task vs. future task reward tradeoff. Exploiting this tradeoff, the agents in

MCFP-A and MCFP-M may improve their rewards over time by sacrificing optimal

reward for the current task, improving the coalition members’ types, and then earning

higher rewards in the future.

• Probabilistic User Model and its Impact (ca3)—In MCFP-M problem, it is critical

for the mediator agents to model the actors it is assisting to form coalitions. Due

to the uncertainties in the real-world, the mediator agents need to consider the fact

that (1) its prepared model of the actors, (2) the impact of the actors’ types on the

effectiveness and the efficiency of a coalition, (3) and the change in their types they

observe cannot be accurately calculated. These inaccuracies are produced by the ad-

ditional difficulties (Section 1) faced by the mediator agents while helping (observing

the actions of the actors, calculating the impact of the models of a coalition on its ef-

fectiveness and efficiency, etc.) the actor agents form coalitions. So, while modeling

the actor agents, and calculating the impact of those models on the effectiveness and



www.manaraa.com

19

efficiency of a coalition, a mediator agent needs to accommodate the environmental

uncertainties that affect its models.

2.2 MCFP-M Coalition Formation Problem

Here we divide our discussions regarding the related works of the agent-mediated coalition

formation research approaches according to the characteristics of the problem domains

the researchers address. First, we discuss the existing agent-mediated coalition formation

techniques for forming coalitions of human users and human organizations and distinguish

their research approaches from ours according to the three critical aspects discussed in Sec-

tion 2.1. Based on our discussed distinctions, we also present how our solution approach

(Section 2.2) would solve MCFP-M better. Then, we discuss the existing multiagent coali-

tion formation solutions in which the agents act as representatives to form buyer coalitions

on behalf of the human users. Furthermore, we discuss how these research approaches do

not adequately address the three critical aspects of MCFP-M and how our solution approach

(Section 2.2) would yield better solutions for the MCFP-M problem.

Figure 2.1 summarizes our categorization of the relevant research approaches discussed

in this subsection. Notice that in the coalition formation research approaches where agents

act as representatives for solving buyer coalition formation problems (Section 2.3), the

role of the actors in the coalitions is minimal as opposed to the agent roles in the other

(Section 2.2) agent mediated problems of coalition formation. So, to better organize our

discussions, we divide these two classes of problems into two different subsections.

There were several research approaches that utilized agents to form human coalitions.

Table 2.1 presents the published research approaches and describes how the critical aspects

of MCFP-M environment (ca2, ca3 Section 2.1) were addressed in those research works.

Furthermore, Figure 2.1 categorizes these research approaches according to their respective

considerations of the critical aspects (ca2, ca3 in Section 2.1) of MCFP-M. In Table 2.1, we
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Figure 2.1: Categorization of Agent-Mediated Coalition Formation Research

see that these multiagent coalition formation research approaches were designed to form

human coalitions with the mediated help of multiagent systems. Although their problem

was similar to the problem of MCFP-M, these research works were not designed to address

both of the aspects (ca2, ca3) critical to the solution of MCFP-M.

Table 2.1: Agent-Mediated Coalition Formation Research I

(Research): Problem. Solution. ca2 ca3
(Ikeda et al., 1997; Inaba et al., 2000): Learner coalition formation in
collaborative learning environments when they cannot solve the task indi-
vidually. Software system that detects opportunities to form learner groups
and a single agent that negotiates learner groups is designed.

Yes na

(Pechoucek et al., 2002): Forming coalitions for the human users or or-
ganizations for solving large, complicated missions. A negotiation-based
distributed coalition formation based on the agents’ social knowledge of
acquaintance models was provided.

na na

(Vassileva et al., 1999; Bull et al., 2001; Greer et al., 2001; Vassileva
et al., 2003): Learner coalition formation for providing 1-to-1 peer help
in collaborative learning environment. A framework where agents watch
and develop probabilistic models of the users and communicate among
themselves to find the best 2-member coalition was developed.

na Yes
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(Research): Problem. Solution. ca2 ca3
(Li et al., 2006): Forming coalition of learners with similar expertise and
preferences. A fuzzy set theory based framework forms coalitions based
on the agents’ model of the learners is developed.

Yes na

na: Not addressed

First, these research works in Table 2.1 did not explicitly utilize or address the dynamics

of type change (ca2, ca3 in Section 2.1) present in the MCFP-M problem. In typical col-

laborative learning environments, the type change among the participating learners always

exists due to the inherent learning capability of the human users. Nevertheless, designing

algorithms and frameworks that actively pursues to accommodate and optimize the critical

type changing aspects would be able to better improve the effectiveness and efficiency of

the formed coalitions. For example, by distributing the expert members among the coali-

tions in the coalition structure, it is possible that not all expert members are able to perform

optimally (loss of effectiveness for some coalitions) in their coalitions due to the other

not-so-expert members. However, those expert students’ interactions with their coalition

members are likely to improve the non-expert group members’ expertise (as discussed by

Cress and Kimmerle (2008) in the context of Wikis) allowing them to form more effective

and efficient coalitions over time.

Second, these research works (Table 2.1) were not designed to consider the probabilis-

tic user models and their impacts (ca3 in Section 2.1) on the effectiveness or efficiency

of the coalitions except (Vassileva et al., 1999; Bull et al., 2001; Greer et al., 2001; Vas-

sileva et al., 2003) where the researchers focused on forming 1-to-1 groups for providing

just in time peer help. However, MCFP-M is a different type of problem where its envi-

ronment contains multi-person coalitions that last longer and provide more frequent and

complex (e.g., one-to-many as opposed to one-to-one) interaction (learning and scaffold-

ing) opportunities for the members than the 1-to-1 peer groups. As a result, in I-HELP, the

environment dynamics that defines a coalition’s ability to improve the types of its mem-

bers by learning and teaching were not accommodated. For example, if a helper-helpee
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(Vassileva et al., 1999; Bull et al., 2001; Greer et al., 2001; Vassileva et al., 2003) group is

not able to solve the problem, the system could find another willing helper from the set of

participating students to provide the necessary help. However, in a multi-person coalition

environment like MCFP-M, members of a group are usually engaged in a longer period of

interactions and such prompt solutions are not appropriate in case a coalition fails to provide

the desired learning outcome for its members. To deal with such problems, and to keep up

with the changing dynamics (user models, changing relationships), the multi-person coali-

tion formation solution for MCFP-M needs to learn the students’ models as well as the

combination of those models (in a coalition) that would improve the effectiveness and ef-

ficiency of the formed coalitions over time. However, such learning and re-structuring of

the formed coalitions considering the probabilistic impact of the models of the students

and the dynamics of type change in the environment to improve the effectiveness and the

efficiency of multi-person coalitions are not discussed in I-HELP. So, for such differences

between the 1-to-1 peer groups and multi-person groups, the probabilistic user modeling,

its considered impact, and the group formation techniques discussed in (Vassileva et al.,

1999; Bull et al., 2001; Vassileva et al., 2003) cannot be readily applied to solve MCFP-M.

In electronic markets, buyer coalition formation is an important purchasing strategy for

people who (1) need to buy small amount of goods and have limited bargaining power or (2)

are interested in increasing their profit margin by obtaining volume discounts. To solve this

problem, several researchers (Boongasame et al., 2009; Louta et al., 2008; Chan and Leung,

2008, 2007; Asselin and Chaib-Draa, 2006; Palopoli et al., 2006; Cornforth et al., 2004;

Li et al., 2003; Tsvetovat and Sycara, 2000) investigated the buyer coalition formation

in the business domain and proposed multiagent frameworks and algorithms where the

agents could form coalitions on behalf of the human buyers they represent. Table 2.2

briefly describes these research approaches and Figure 2.1 categorizes and compares these

mentioned research approaches according to their respective considerations of the critical

aspects (ca2, ca3 in Section 2.1) of the MCFP-M environment.
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Table 2.2: Agent-Mediated Coalition Formation Research II

(Research) Solved Problem
(Boongasame
et al., 2009)

Presented an algorithm for forming a buyer coalition with bundles of
items, called the GroupBuyPackage scheme, in order to maximize the
total discount. Their simulation results showed that the total discount of
the coalitions in this scheme are close to that in the optimal scheme.

(Louta et al.,
2008)

Proposed a dynamic multi-lateral negotiation model and construct an ef-
ficient negotiation strategy based on a ranking mechanism that does not
require a complicated rationale on behalf of the buyer agents. Their pro-
posed framework considered both contract and decision issues, is based
on real market conditions, and has been empirically evaluated.

(Chan and
Leung, 2008,
2007)

Proposed a distributed mechanism where agents propose incremental im-
provements (using private-belief based non-transferable utility) toward a
stable solution. Their experiments showed that the mechanism is able to
reach core stable solutions in over 97% of the cases, and b-core stable
solution in almost of all cases.

(Asselin and
Chaib-Draa,
2006)

Proposed a negotiation protocol for software to find the pareto-optimal
buyer coalitions and minimizes worst distance to ideal among all software
agents given strict preference ordering.The authors also investigated the
buying behavior changes of the agents.

(Palopoli et al.,
2006)

Proposed a Consumer Buying Behavior model, called E2 − CBB, that
considers new emergent issues, as the capability to solve semantic het-
erogeneity, and the adaptive presentations of Web stores to classify and
compare a number of agent-based approaches for managing B2C e-
commerce.

(Cornforth
et al., 2004)

Proposed a novel market-based communication protocol, which governs
the aggregate behavior of individual agents and subsequent emergent
properties of the system. In the solution, the agents used the contract
net protocol and bid to join coalitions that are the solution to the given
problem.

(Li et al., 2003) Studied the mechanism design problem of coalition formation and cost
sharing in an electronic marketplace, where buyers can form coalitions
to take advantage of discounts based on volume. The authors propose a
coalition formation mechanism that reaches stable core of the game.

(Tsvetovat and
Sycara, 2000)

Discussed a negotiation-based coalition formation as a means to forma-
tion of groups of customers coming together to procure goods at a volume
discount (“buying clubs”) and economic incentives for creation of such
groups.

Notice that Although designed to form coalitions of human users by a set of mediating

agents, these proposed solutions were not designed to exploit the dynamics of type change

(ca2 in Section 2.1) or consider the probabilistic models of the actor agents and those
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models’ impact (ca3 in Section 2.1) on the effectiveness and efficiency of the coalitions. For

example, the agents in these solutions do not have any option of engaging in the tradeoffs

in their current task and future task rewards stemming from the improvements in their

types (i.e., buyer capabilities) due to their interactions (i.e., business transactions) with the

coalition members. Furthermore, in (Asselin and Chaib-Draa, 2006) and (Chan and Leung,

2008), the researchers assumed that the buying capability or available capital, which is

equivalent to the type of an agent in MCFP-M, is accurately known by the buyer agent

and there is no uncertainty in a buyer agent’s ability to utilize its type during a buying

transaction. Although this assumption is valid in the business-related problem domains

addressed by the researchers, it does not hold for MCFP-M.

Our discussions in Section 2.3 and Section 2.2 indicate that these multiagent coalition

formation research works were not designed to address the critical aspects (ca2, ca3 in Sec-

tion 2.1) of MCFP-M. So, as our solution for MCFP-M (Section 1.2), we design and im-

plement iHUCOFS—a multiagent-based coalition formation framework in which a set of

intelligent mediator agents assist a set of human users form coalitions and scaffold those hu-

man users to optimize their effectiveness and efficiency in the coalitions over a set of tasks.

The iHUCOFS framework’s mediator agents probabilistically model the human users and

consider the impact of their models on the effectiveness and efficiency of the coalitions. The

mediator agents also trade off the expected reward of solving the current task and the poten-

tial reward of better coalitions in the future with the hope that such sacrifices in the present

would yield positive type changes in the participating human users leading to more effective

and efficient coalitions over time. Notice that we position iHUCOFS in both bottom-right

and bottom-left quadrants of Figure 2.1. That is because of the two different types of im-

plementations (Section 1.3) of iHUCOFS framework. iHUCOFS framework’s ideas have

been implemented in two versions: (1) VALCAM—a heuristics- and auction-based algo-

rithm and (2) MHCF—a negotiation-based algorithm for forming student coalitions in the

CSCL environment. In VALCAM, the mediator agents utilize a heuristic-based algorithm
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to utilize the dynamics of type change of the participating students and do not consider

the probabilistic models of the students and those models’ probabilistic impact. Further-

more, in MHCF, the mediator agents utilize the probabilistic models of the participating

students and those models’ probabilistic impact on the performance of the coalitions (using

a Bayesian network) to exploit the type-changing influences of the students (i.e., dynam-

ics of type change). So, we place part of the iHUCOFS framework in the (1) bottom-left

quadrant of Figure 2.1 to acknowledge its VALCAM implementation and (2) bottom-right

quadrant of Figure 2.1 to acknowledge its MHCF implementation.

2.3 MCFP-A Coalition Formation Problem

Agent-acted coalition formation is a well-researched area in multiagent systems domain.

Researchers working in the deterministic domain (i.e., without considering uncertainties)

investigated the agent-acted coalition formation research approaches from a variety of per-

spectives to use it as a technique to solve problems and to understand the theoretical under-

pinnings of the related to those problems. The coalition formation research works related

to the MCFP-A problem are described in Table 2.3.

Table 2.3: Agent-Acted Coalition Formation Research I

(Research) Solved Problem
(Shehory and Kraus, 1995) Coalition formation as a method of task allocation
(Sandholm and Lesser,
1997)

Coalition formation for computationally bounded
agents

(Dieckmann and Schwalbe,
1998)

Coalition formation in dynamic environments

(Sandholm et al., 1999) Computational complexity of coalition formation
(Vassileva et al., 2002) Coalition formation for long term coalitions

(Breban and Vassileva,
2002)

Coalition formation in business environments (coali-
tions between customers and vendors)

(Chalkiadakis and
Boutilier, 2003)

Coalition formation for agent coordination

(Dang and Jennings, 2004) Optimization of social payoff in coalition formation
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(Research) Solved Problem
(Abdallah and Lesser, 2004) Coalition formation as a method of agent organization
(Yokoo et al., 2005) Solution properties of the coalition formation prob-

lem in open anonymous environments (e.g., internet)
(Bachrach and Rosen-
schein, 2008)

Coalition formation in heterogeneous task solution
environment

(Sombattheera and Ghose,
2008)

Anytime coalition structure generation for coalition
formation problems

Although these research works discussed in Table 2.3 were designed to solve the agent-

acted coalition formation problem in a variety of environments, they were not designed

to address the critical aspects (ca1, ca2 in Section 2.1) of MCFP-A. For example, these

research approaches assume that once a set of agents with specified types form a coalition,

the outcome of that coalition is guaranteed. However, as we have discussed for the first

critical aspect (ca1 in Section 2.1) the outcome of a coalition is not guaranteed but un-

certain due to the environmental influences and thus need to be considered by the agents.

Furthermore, these research works do not explicitly consider or utilize the tradeoffs arising

from the dynamics of type change (ca2 in Section 2.1). Due to the lack of adequate con-

sideration of these two factors, we place these research works in the top-left quadrant of

Figure 2.2.

Notice that the researchers do not accommodate these two critical factors mainly be-

cause they focus on finding the coalition structure for a given set of agents with different

types for an environment to optimize some other aspects (e.g., reward) of the described

problem. As a result, (1) the agents in their environments do consider the types of the

other agents in their decision-making, (2) the agents’ types change as a result of their in-

teractions, but the agents do not explicitly utilize the dynamics of type change as a tool or

technique for improving the effectiveness or efficiency of the formed coalitions. Due to the

uncertainty and the dynamicity (due to the task and agent openness) of the environment,

the computational complexity of the coalition formation problem is even more magnified

and it is important for the agents to utilize the dynamics of type change as a tool or tech-
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nique for improving the effectiveness or efficiency of the formed coalitions. Thus, although

their approaches do solve their problems well, those approaches cannot be directly applied

to solve MCFP-A without extending them to consider the critical aspects of the MCFP-A

problem.

Researchers working in the multiagent systems domains also studied various types of

agent-acted coalition formation problems in uncertain environments. Table 2.4 outlines the

published solutions of the agent-acted coalition formation problems in uncertain environ-

ments and identifies how each solution approach addresses the critical aspects (ca1, ca2 in

Section 2.1) of MCFP-A.

Table 2.4: Agent-Acted Coalition Formation Research II

(Research): Problem, Solution. ca1 ca2
(Ketchpel, 1994): Coalition formation for tasks that require heterogeneous
agent expertise and where the agents are uncertain about the value of a
coalition. An auction-based coalition formation algorithm is proposed.

Yes na

(Dieckmann and Schwalbe, 1998): Coalition formation for tasks that re-
quire heterogeneous agent expertise and where the agents are uncertain
about the value of a coalition. Agents use non-cooperative best-reply rule
to join the best reward-yielding coalition.

Yes na

(Suijs et al., 1999; Suijs and Borm, 1999): Coalition formation for a set
of agents with random finite expected reward for a set of tasks. Theoreti-
cal foundations for games with this restricted form of uncertainty i.e., the
existence of core was discussed.

na Yes

(Klusch and Gerber, 2002): Coalition structure generation for dynamic
environments where tasks and agents change. Negotiation-based dis-
tributed coalition formation scheme was provided for developing efficient
coalition formation algorithms in dynamic environments.

Yes na

(Kraus et al., 2003): Coalition formation for tasks in heterogeneous, time-
constrained tasks with incomplete information. Heuristic-based coalition
formation protocol and strategies was designed.

Yes na

(Soh and Li, 2003): Coalition formation in dynamic, uncertain, and noisy
environments. Multi-phase (planning, instantiation, and evaluation) and
negotiation-based coalition formation algorithm was designed.

Yes No

(Griffiths and Luck, 2003): Coalition formation for agents with hetero-
geneous objectives in a dynamic, uncertain, and noisy environment. Clan-
(trusted agent group) based coalition formation mechanism was proposed.

na Yes
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(Research): Problem. Solution. ca1 ca2
(Blankenburg and Klusch, 2004): Forming coalition of the most reliable
agents in repeated coalitional games. A trusted kernel-based, encryption-
enabled coalition formation protocol was designed.

Yes na

(Gaston and DesJardins, 2005): Finding effective and efficient social net-
work in dynamic environment. Distributed coalition formation algorithm
for the agents was provided.

na na

(Chalkiadakis, 2007; Chalkiadakis and Boutilier, 2008): Repeated
Agent coalition formation under uncertainty. Negotiation-based and
Bayesian learning enabled distributed coalition formation protocol was
provided.

Yes Yes

(Wang and Singh, 2007; Erete et al., 2008; Hang et al., 2008, 2009;
Hendrix et al., 2009) Modeling the trust of other agents. Various social
and communication-strategy-based distributed algorithms are discussed
that could capture an agent’s local estimate of the other agents’ perfor-
mance or behavior for a specific task or tasks in the form of trust.

na Yes

(Stone et al., 2000; Kuhlmann et al., 2006; Rettinger et al., 2008). Mod-
eling teammates in the robocup soccer. Learning-enabled and statistical
modeling of teammates are designed.

na Yes

na: not addressed

Figure 2.2: Categorization of Agent-Acted Coalition Formation Research

Although there were several significant research approaches towards solving the agent-

acted coalition formation problem in various settings (Table 2.4), none of these research

approaches were designed to adequately address both of the critical aspects of the MCFP-
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A problem. Figure 2.2 also categorizes these research approaches discussed in Table 2.4 in

four quadrants according to their considerations of the critical aspects of MCFP-A.

In the MCFP-A environment (Section 2.1), an agent has the opportunity to exploit the

dynamics of type change to improve its own rewards over time. That means the agents

have another new dimension besides the basic exploration vs. exploitation tradeoff (Kael-

bling et al., 1996) common in typical reinforcement learning scenarios to improve its own

rewards over time. Notice that, the change in the types of the agents do occur in a variety

of coalition formation environments as presented in Table 2.4 and Figure 2.2. Notice that

the solutions proposed by some of the multiagent researchers (Griffiths and Luck, 2003;

Chalkiadakis, 2007; Chalkiadakis and Boutilier, 2008) have considered the impact of join-

ing a coalition on the types of the actor agents and the tradeoffs arising from such an impact.

Although not an exact match, this consideration is similar to the notion of agent types in our

research. However, an agent’s ability of deliberately influencing type change in its coalition

members’ types and the tradeoffs associated with such choices have not been considered.

To summarize, the state of the art in multiagent coalition formation have not exploited

the tradeoffs associated with the situation where an agent can influence its coalition mem-

bers to change their types by working in the same coalition due to implicit and/or explicit

learning. There are several repercussions of not considering the impacts and the tradeoffs

associated with such influences of the agents. First, not considering these two types of

learning and the associated tradeoffs would mean that the agents will not be able to learn

and improve their types efficiently. Second, note that forming coalitions in an uncertain

environment is an intractable problem that requires at least exponential cost to solve it

(Chalkiadakis, 2007) and that the improved types of the agents result in improved perfor-

mances of coalitions. Thus, the ability to improve the types of the agents efficiently through

the use of implicit and explicit learning in this computationally demanding environment is

a potential leverage for the system designer that can provide higher performance without a

high computational cost. As a result, not taking advantage of this leverage would result in



www.manaraa.com

30

inefficient solutions of the ADLIT problem. Third, in an agent-human hybrid work envi-

ronment, the human users learn from their interactions and change their types (e.g., become

more skilled in solving tasks by interacting with other group members (Stahl et al., 2006))

over time. Failure to exploit that type-changing nature of the human users while forming

coalitions in such a hybrid system may result in coalitions that have poor performances.

Finally, the agents whose decision making processes do not exploit efficiently or reap the

benefits from the learning or improvement of types naturally occurring in from the coali-

tions will be deemed unhelpful by the human users making the agent-human cooperation

or coordination quite difficult.

To adequately address both these two critical aspects (ca1, ca2), we propose the ADLIT

framework (Section 6) as a solution to the MCFP-A coalition formation problem. Our over-

all approach to solve the MCFP-A coalition formation problem is based on the influence or

consideration of agent learning on its choice of coalition (from the viewpoint of short-term

vs. long-term rewards tradeoff) to form better coalitions (in terms of earned rewards) in an

uncertain environment where the agents’ types change due to their learning experiences.

And thus, when an agent considers which coalition to join, it considers how its own learn-

ing and teaching with its coalition members may change its own type and the types of its

coalition members. Based on those type changes, the agents estimate the tradeoff between

the reward for the current task and the reward for future tasks and choose their coalitions

and learning interactions according to that tradeoff value calculation.
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MCFP-M: iHUCOFS Framework

In this chapter we describe the Integrated Human Coalition Formation and Scaffolding

(iHUCOFS) framework (Soh and Khandaker, 2007; Khandaker and Soh, 2008) and its im-

plementation in the MHCF algorithm for human coalition formation. First, in Section 3.1,

we describe the iHUCOFS framework environment using a set of assumptions. Then us-

ing those assumptions, we derive a set of design principles in Section 3.2 for our solution.

Then, using those design principles, we discuss the realization of our Multiagent Human

Coalition Formation (MHCF) algorithm for forming human coalitions in Section 3.3.

3.1 Assumptions

Assumption 1 (Task)

There is a set of tasks in the environment that needs to be solved. Each task contains some

reward that is available upon solving it. Not all tasks are available or known to the human

users at the creation of the environment.

Assumption 2 (Human Coalitions)

There is a set of human users in the environment who form disjoint coalitions to solve

the tasks to earn rewards as a coalition. That coalitional reward is then distributed among

the members according to some distribution scheme agreed upon by the members while
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forming the coalition. How well a coalition is able to solve an assigned task depends on

the skills or types of its members.

Assumption 3 (Agents)

There are a set of mediator agents in the environment who help the human users form or

join coalitions. There is also a system agent that assign tasks to the human coalitions and

provides rewards to the members of the formed coalitions when they solve that assigned

task. Figure 3.1 shows the conceptual setting of the iHUCOFS framework.

Figure 3.1: Conceptual Architecture

Assumption 4 (Learning)

The human user participating in the task solving activities of their respective coalitions are

capable of learning from their experiences and may change their behavior over time due to

their learning. Human learning in a collaborative setting can come in various shapes and

forms (Inaba et al., 2000):
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• Learning by Observation. The users learn indirectly by observing other learners’

learning process. This type of learning can be facilitated by the mediator agent by

putting the human user in a group that contains users with similar deficiency of

knowledge about a certain task.

• Learning by Teaching/Guiding. Learning by teaching occurs when a human user

learns or refines his or her own knowledge by teaching other group members. This

type of learning is particularly useful in CSCL settings where the students learn by

teaching each other.

• Learning by being Taught. This is the simplest type of learning where a human

user learns when he or she is being taught by someone else. This type of learning is

particularly useful in CSCL settings where the teacher and students have differences

in their knowledge about the task they are solving.

• Learning by Reflection/Self-Expression. This type of learning occurs when a hu-

man user rethinks his or her own solution and analyzes his or her self-thinking pro-

cess (Schon, 1987, p. 28).

• Learning by Apprenticeship. In learning by apprenticeship, the expert teacher

shows the apprentice (student) how to do a task, watches as the apprentice prac-

tices portions of the task, and then turns over more and more responsibility until the

apprentice is proficient enough to accomplish the task independently (Collins et al.,

1991).

• Learning by Practice. This type of learning occurs when a human user applies his

or her existing knowledge to solve an assigned problem. This type of learning is

very common in situations where each human user contributes to the solution of the

assigned problem by working on it. However, there may be human users who are

free-riding i.e., depending on the competent and the knowledgeable users to solve
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the assigned problem. As a result, these users do not learn by practice.

• Learning by Discussion. This type of learning occurs when the human users discuss

a topic with each other. Notice that this type of learning is basically a sequence of

Learning by Observation, Learning by Teaching, Learning by being Taught, Learning

by Reflection/Self-Expression, Learning by Practice with the exception that the roles

of the human users are dynamic in Learning by Discussion.

Assumption 5 (Scaffolding)

We refer to scaffolding as a form of assistance provided to a human user by a teacher or peer

where that assistance helps that human user perform a task that he or she would normally

not be able to accomplish alone. We assume that the system agent and the mediator agents

try to scaffold the human users to change their behaviors to improve their performance as

individuals and as coalition members.1 This scaffolding can be of two types:

• Explicit. A human user is guided by the assigned mediator agent explicitly to help

him learn how to change his or her behavior for the current task in the current coali-

tion.

• Implicit. The system agent or the assigned mediator agent constructs environment

states (implicit help) that allow the human user learn how to improve his or her

behavior in the future coalitions. Here, the implicit help can be provided in the

form of putting the human user in a coalition where the other coalition members can

engage in teaching and learning interactions with that that human user to improve his

or her behavior.

Assumption 6 (Uncertainty)

The behaviors of the human human users i.e., their individual actions in a coalition, are
1The agent-mediator instance of coalition formation problem may also involve a changing agent autonomy

over time. Switching between the role of an adviser and a representative. In our research, we focus only
on the coalition formation- and scaffolding-related aspects of the agent-mediator cases of the ADLIT. A
research approach that investigates the issue of adjustable autonomy could be found in (Screrri et al., 2002;
Maheswaran et al., 2004).
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stochastic–meaning the behavior of the human human users cannot be accurately modeled;

only modeled with probability.

Assumption 7 (Reward)

The rewards achievable by the human coalition can be divided into two generic categories:

(1) current-task rewards and (2) future-task rewards. The current-task reward is a human

human user’s share in the coalitional reward his or her coalition has earned by solving an

assigned task and can be exactly calculated as soon as the coalition completes the assigned

task. The future-task reward is an estimation of the current-task rewards of the future tasks

that is expected to be available due to the improvement in a human human user’s behavior

due to his or her learning. The value of the future-task reward for a human human user’s

participation in his or her coalition’s effort to solve an assigned problem can be calculated

as an expected value.

Assumption 8 (Attribute Categorization)

We assume that the skills or knowledge of the human users can be divided into a finite

set of discrete categories. For example, the knowledge of the human users can then be

divided into high, medium, and low. This assumption arises from our observation that the

human skills regarding various types of tasks can often be identified by domain experts

and measured by the psychometric measurement techniques. For instance, the knowledge

of a human user regarding a particular topic can be determined by pre-tests, his or her

motivation can be determined by psychometric tests (Vallerand et al., 1992). However,

these psychometric tests themselves often suffer from measurement errors which reduces

the accuracy of their measurements (Carmines and Zeller, 1979).

3.2 Design Principles

According to our assumptions of the iHUCOFS framework (Section 3.1) we use the fol-

lowing principles while designing the MHCF algorithm for coalition formation:
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User Modeling

The mediator agents must be able to model different user motivations, behaviors, and util-

ities and should be able to capture the change in their behavior over time due to learning.

This design principle addresses Assumption 2, Assumption 3, and Assumption 4 (Sec-

tion 3.1).

Satisficing Solution for the Current Task

The system agent and the mediator agents must be able to take decisions with incomplete

information or noise. Further, since outcomes are uncertain, it could be costly for the

agents to devise an optimal solution only to find out that it does not lead to the expected

outcome. Thus, this motivates the agents to make do with what they know, and sub-optimal

but satisficing solutions may be preferable. This design principle addresses Assumption 2

(Section 3.1).

Learning Mechanism

To overcome the noisy environment and incompleteness of the available information, the

mediator agents should use a learning mechanism to filter out the necessary information to

achieve the required level of accuracy. The learning mechanism could include typical agent

learning (e.g., reinforcement learning) and also the multiagent learning where the mediator

agents learn from each other’s experience (e.g., learning by discussion and learning by

observing). This design principle addresses This design principle addresses Assumption 6

(Section 3.1).

Scaffolding

The proposed iHUCOFS environment is noisy and has incomplete information and un-

certain outcomes. These characteristics imply that the mediator agents may not be able

to collect accurate data to form the most suitable coalition. However, we know that hu-

man users may learn and improve their behavior when scaffolding is provided. Therefore,

the mediator agents should spend more time and computational resources for scaffolding.

Since the mediator agents’ beliefs about the environment may contain inaccuracies, spend-
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ing resources for forming the perfect coalition may not yield the best outcome in terms of

utilities for the human users. On the other hand, spending more resources for scaffolding

would mean that the human users would be able to improve their behavior and in turn im-

prove the outcome for the current and future coalitions. This design principle addresses

Assumption 4 and Assumption 5 (Section 3.1).

Exploiting the Formation Vs. Scaffolding Tradeoff

Say the system agent is forming a coalition to solve a task. When the task is completed, a

mediator agent is able to collect the rewards for its assigned human user. To optimize the

reward, that mediator agent could decide to spend more time and computational resources

to form or join the perfect coalition, i.e., find a coalition that would yield its human user

the optimal reward for the current task. On the other hand, that mediator agent may choose

to spend more for scaffolding the formed coalition with the hope that its assigned human

user is able to improve its capabilities and skills so that he or she is able to earn higher

rewards for future tasks. This tradeoff arises from the fact that the coalitions that optimize

the reward for the current task for a human user may not be the coalition that provides

the optimal learning opportunities to increase the rewards for the future tasks. This de-

sign principle addresses Assumption 4, Assumption 5, Assumption 6, and Assumption 7

(Section 3.1).

3.3 MHCF Algorithm

Based on the design principles (Section 3.2) of the iHUCOFS framework, we have de-

signed the Multiagent Human Coalition Formation (MHCF) algorithm (Khandaker, 2009;

Khandaker and Soh, 2010b,c) for forming human coalitions.

3.3.1 Environment

The MHCF environment E is denoted as a 5-tuple 〈S,A,G, T,R〉. Here,
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• S = {s1, . . . , sns} is the set of human users

• A = {a1, . . . , ans} is the set of agents where each agent ai is assigned to a human

user si

• G = {g1, . . . , gng} is the set of human coalitions

• T = {t1, . . . , tnt} is a set of tasks which the human coalitions collaborate to solve,

and

• R is a 2-tuple R = 〈Rct, Rft〉 where Rct and Rft are two real-valued functions that

estimate the probability of a human user’s current-task and future-task rewards when

he or she joins a coalition

Here Rct is defined as a function:

Rct : f(smg,t, tj)→ R (3.1)

furthermore, Rft is defined as a function:

Rft : f(smg,t, tj)→ R (3.2)

In Equation 3.1 and Equation 3.2, smg,t is a set of the models of the members of the

potential human coalition g at time t where the coalition g is being formed to solve the task

tj , and we define,

smg,t = {smk,t|sk ∈ g} (3.3)

Note that the functions Rct and Rft use the model of the members of a potential coali-

tion to calculate the expected current-task and future-task rewards for a human user to if he

or she joins that potential coalition to solve a task. While the current-task reward allows
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an agent to estimate what its human user will receive after participating in a coalition, the

future-task reward is what the agent expects the human user will gain in the future, taking

into account the likelihood of the student working with some of the same coalition mem-

bers on similar assignments again. This allows MHCF to look ahead while encouraging

students to perform sufficiently well in their current tasks.

3.3.2 MCFP-M Problem

We formally define the MCFP-M problem as:

Given a set of human users S and a set of tasks T , the human coalition forma-

tion problem for the mediating agents A refers to forming or joining coalitions

on behalf of their human users so that, (1) those human users S are able to

solve task T effectively and (2) the human users are able to improve their types

(smi,t) to earn higher rewards for the future tasks.

The solution to the MCFP-M problem comes from the MHCF algorithm for coalition

formation where the mediator agents negotiate to find a coalition for their assigned human

users.

3.3.3 MHCF Algorithm for Coalition Formation

Coalition formation in MHCF occurs in a set of negotiation rounds where in each round,

one agent is randomly selected to act as a proposer who negotiates with other agents in the

framework to form a coalition for its assigned human user. The negotiation of an agent is

carried out in the Proposition, Consideration, and Notification steps. In the following list,

we describe these steps in details and Algorithm 3.1 summarizes the coalition formation

process.

• Proposition - In the proposition step, the proposer agent chooses (nsg − 1) other

agents (nsg is the minimum coalition size) and proposes a coalition which includes
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the human users assigned to those chosen agents. The proposal from an agent ai

to agent aj is: P = 〈smg,t, rct, rft, tj〉 where smg,t = {smk,t|sk ∈ g} is a set of

models (not the ids) of the students in the proposed coalition g, rct, rft ∈ R are the

expected current-task and future-task rewards (Equation 3.1, Equation 3.2) for the

task tj calculated from the perspective of ai.

• Consideration - In this step, the proposed-to agent aj first compares its model smj

stored by the proposer agent ai with its own model of human user sj . If that model

is not updated, in other words, if agent ai is unaware of the recent changes in the

model of the human user sj , the responding agent rejects the proposal and sends the

updated model of sj to the proposer. Note that this notification from the responding

agent allows a proposer to have updated view of the other potential members during

the coalition formation round. If the proposer has the updated view of the respond-

ing agent’s assigned student, the responding agent compares the expected current-

task and future-task reward values of the proposed coalition to its current coalition.

The responding agent leaves its current coalition to join the proposed coalition if

the weighted sum of current-task and future-task rewards is larger for the proposed

coalition g, i.e.,

rg,t = wct · rct,t + wft · rft,t (3.4)

In Equation 3.4, rct,t = Rct(smg,t) ∈ R and rft,t = Rct(smg,t) ∈ R

• Notification - If all of the chosen agents agree to join the proposed coalition, the

proposer sends out a confirmation message to them notifying that they are now in

the newly formed coalition. Otherwise, if any of the responding agent disagrees, the

proposer stops the negotiation process and waits for some other agent’s proposal or

its next turn to join a coalition.
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Once the negotiation rounds end, the agents notify their assigned human users about

their respective newly formed coalitions and the details of the task they will collaborate to

solve and the collaboration process begins.

Notice that in the proposition step of the negotiation process, the proposer does not

reveal its preference of the coalition members-as it only reveals the types or models of those

coalition members without identifying them-to its counterpart, the responding agent. Such

a revelation would have put the proposer agent at a disadvantage since the responding agent

could, after getting the proposal, propose its own coalition with the members mentioned in

the proposal without including the original proposer.

Algorithm 3.1 MHCF Algorithm for Coalition Formation
1: if Chosen as a proposer then
2: Randomly choose Sne ⊆ S (as neighborhood agents)
3: Receive updated member models from neighborhood agents Sne
4: Choose coalition SM ⊆ Sne where sm are models members SM and

arg max
SM

Rf t(smg,t) +Rf t(smg,t)

5: for all a ∈ A do
6: Send proposal P = 〈smg,t, rct, rft, tj〉 to a
7: end for
8: if All agents a ∈ A accept then
9: Form coalition SM

10: end if
11: else if Received proposal P then
12: if rg,t is higher for coalition smg,t ∈ P than current coalition then
13: Join smg,t

14: end if
15: end if

3.4 Learning for Coalition Formation

In this section we describe the multiagent learning techniques used by the human user

agents in the MHCF environment. To describe the agent learning, we first discuss the

properties of the MHCF environment that makes the learning employed by the agents a

difficult problem to solve. Then we discuss the learning goal of the agents in the MHCF
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environment and provide details of the processes with which the agents try to achieve those

goals.

3.4.1 Learning Problem

Our goal is to design and develop a multiagent framework that is applicable in real-world

human coalition formation environments. Since we do not aim to find the exact solution of

the coalition formation problem, our aim is to design the framework in such a way that, once

deployed, the agents are able to interact with the environment through their actions, learn

by observing the consequences of their actions and improve their actions over time. Our

focus is to develop an environment where the agents work together as a cooperative mul-

tiagent system and help each other learn. One way to implement such learning technique

is reinforcement learning. However, the agents in such a real-world environment face the

challenges like multiagent learning designers face. One of those problems is that the state

and action spaces are continuous. As a result, designing and implementing a multiagent

reinforcement learning environment becomes difficult and sometimes impossible (Busoniu

et al., 2008). Furthermore, real-world human coalition formation contains incomplete and

uncertain information which complicates the learning problem for the agents further. In our

research work, we tackle the learning problem for coalition formation using: (1) domain

knowledge and heuristics regarding the environment of a generic coalition formation prob-

lem and (2) a multiagent systems’ ability to utilize cooperative learning. We include the

domain knowledge of the human users working in the coalition formation problem by the

following assumptions about the problem domain. According to our setup of the MHCF

environment, the mediator agent’s learning goal is to estimate the probability that a human

user with a given model (i.e., a set of attribute values) and a given scaffolding action is able

to complete an assigned task in the joint coalitional action.
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3.4.2 Bayesian Cooperative Learning

Notice that, to form coalitions in MHCF, in other words, to decide who to form the coali-

tion with, each mediator agent must learn: (1) the model of other mediator agent’s human

users, (2) the probabilities that describe given a human user’s model, his or her agent’s scaf-

folding, e.g., what is the probability he or she is able to complete the negotiated assigned

individual task, and (3) the probability that a human user’s model would change after work-

ing in a coalition. In the MHCF environment, one mediator agent is assigned to a human

user and may not be able to observe the probabilities regarding the values of human user

models or scaffolding that is not represented by its assigned human user. That is because,

not all human users would have the same model, not all tasks would have the same required

joint coalitional actionset, and finally, not all human users would have the opportunity of

working with every other possible type of human users. For example, in a CSCL environ-

ment, a mediator agent assigned to a student with medium knowledge category may not be

able to observe the behavior of a human user with a model containing high knowledge cat-

egory. This implies, it will be difficult for the mediator agents to learn those probabilities

through their own experience/observation only. However, if we try to frame the problem of

learning these probability values as a cooperative learning problem, then it becomes easier

for the agents to solve since they share burden of learning among themselves. For example,

in the CSCL case, if the agent with high knowledge category human user and the agent

with medium knowledge category human user share each other’s observations, both agents

would be able to refine their probability estimates regarding human users with high and

medium knowledge category. So, with our approach of cooperative learning, two questions

arise: (1) how the probabilities regarding the MHCF environment would be represented

by individual agents and (2) how would the agents share their learned probability values

with each other. For modeling the probabilities of the environment, the mediator agents in

MHCF environment use Bayesian networks, and for sharing the learned probability values,

the mediator agents use cooperative learning.
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As defined in (Xiang, 2002, p. 28), a Bayesian network is a triplet 〈V,G,P〉 where

V is a set of variables, G is a connected directed acyclic graph whose nodes correspond

one-to-one to members of V such that each variable is conditionally independent of its

non-descendants given its parents and P is a set of probability distributions. Say the parent

of nodes v ∈ V is denoted by π(v), then,

P = {P (v|π(v))|∀v ∈ V } (3.5)

Furthermore, the following holds:

P (V ) =
∏
v∈V

P (v|π(v)) (3.6)

The use of Bayesian network allows the agents to represent the probabilities of the en-

vironment in a compact way. First, using Bayesian network, the agents are able to learn the

likelihood of the events that happen in the coalition. For example, observing the assigned

human user’s behavior, an agent is able to answer the question: “what is the likelihood that

given a user model and the coalition, the assigned human user would be able to complete

the assigned part of the coalitional task?” Second, a Bayesian network provides a compact

representation of relevance of the various elements to the agents directly and qualitatively

before the agents make any observations or numerical assessments. For example, it al-

lows the agent designers to encode the dependence relationship among the elements of

the MHCF environment. Finally, the causation encoded in a Bayesian network allows the

agent designers to define the structure of the relevance relationships among the elements of

the MHCF environment. That encoded causation allows the Bayesian network to eliminate

superfluous information and represent the non-transitive and induced dependencies. For ex-

ample, in MHCF, causation would allow the mediator agents to not care about information

that is not related to its assigned human user’s current-task and future-task rewards (e.g.,

the current-task and future-task reward of human users in other coalitions). Furthermore,
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the encoded causation can allow the mediator agents to reason by combining independent

elements, (e.g. the coalitional task and its assigned human user’s model) to the dependent

elements (e.g., the current-task reward of its assigned human user) of the MHCF environ-

ment.

3.4.3 Use of a Bayesian network

Figure 3.2 shows an example Bayesian network that could be used by the agents in MHCF

to represent/learn the current task and future task functions.

Figure 3.2: Example of Bayesian network Structure

In the MHCF environment, we assume that the mediator agents are able to observe

and learn from its assigned human user’s actions in the coalition. However, these agents

may not be able to observe the actions of the other human users in the coalition. As a

result, mediator agents would not be able to learn how the model and scaffolding affect

their individual actions. Also, to improve the current-task and future-task rewards of the

assigned human user, a mediator agent needs to learn the Bayesian network for all values of

the models, tasks, and scaffolding. One way the agents could learn this Bayesian network
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more efficiently and more accurately is by: cooperative or divided learning. Using this

strategy, the mediator agents cooperatively build a Bayesian network that maps a potential

human user groups’ model to their collaborative learning outcome, i.e., representsRct, Rft.

In other words, through communication, all the participating mediator agents maintain a

single Bayesian network and together learn the probabilistic model of the environment.

Figure 3.3 shows the structure of the cooperatively built Bayesian network.

Figure 3.3: Cooperative-Built Bayesian network

The Cooperatively built Bayesian network is built and maintained using the following

steps (Figure 3.4):

• Initialization—Initialization is done by (a) setting uniform priors - i.e., setting equal

current-task and future-task outcomes for all inputs, or (b) using previously earned

rewards by the human users.

• Update—When the coalition completes the task, the group receives the reward which

is used to update the Bayesian network probabilities.

Notice that each mediator agent is able to observe different human user models (i.e.,

the model of their assigned human users) simultaneously and thus together divide the task

(cf. division learning in (Dillenbourg, 1999) of observing the entire set of possible model-
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Figure 3.4: Update of Bayesian network

output combinations. This learning strategy is designed to allow the agents to learn the

dynamics of the environment better.

3.5 Implementation in SimCoL and ClassroomWiki

Our implementation of iHUCOFS consists of our development of the collaborative learn-

ing simulation toolkit SimCoL (Chapter 4) and the instantiation of the MHCF algorithm

for forming student coalitions in ClassroomWiki (Chapter 5)—a web-based, multiagent-

enabled collaborative writing tool. Notice that, our goal of implementing SimCoL is to

investigate and validate our assumptions (e.g., impact of group formation and scaffolding

on student performances) in the iHUCOFS framework. Furthermore, our instantiation of

the MHCF algorithm in ClassroomWiki validates MHCF’s impact in terms of improving

the performances of the formed student coalitions.
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MCFP-M: SimCoL

In this chapter, we describe Simulation Tool for Collaborative Learning SimCoL-a multia-

gent application for simulating the collaborative learning of a set of students in the CSCL

environment. The inspiration source of our research work here is CSCL environments that

combine research ideas from psychology (especially educational psychology), education,

and computer science to create an online collaborative learning environment for students.

The rest of this chapter is organized as follows. Section 4.1 presents a set of learning theo-

ries and observations based on the individual and collaborative human learning process and

define the scaffolding of students in a collaborative learning environment. In Section 4.2,

we use the observations in Section 4.1 to design the agent that represents the teacher, the

agents that represent the students, and the tasks in the SimCoL environment. Then in

Section 4.3, we describe how the SimCoL environment was realized using Repast—a mul-

tiagent simulation tool. Section 4.4 describes our experiment setup and results.

Notice our use of the following terminologies in this chapter: an agent that simulates

the teacher’s behavior in SimCoL is denoted as a simulated teacher or teacher while an

agent that simulates a student’s behavior is called a simulated student or student. An agent

that assists the students in forming groups is called a student assistant agent, while one that

assists the teacher is called a teacher assistant agent.
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4.1 Categories of Student Learning

In this section, we discuss definitions, theories, and empirical observations regarding three

different aspects of students’ learning processes: (1) individual learning, (2) peer-based

learning, and (3) collaborative learning in student groups. Using these learning theories,

we derive a set of observations that are used in Section 4.2 to build agents to simulate the

student collaborative learning behavior in a CSCL classroom.

4.1.1 Individual Learning

We use “learning” to refer to the improvement in a student’s knowledge or expertise on a

topic or skill, which could be topic-specific, e.g., learning how to solve differential equa-

tion, or topic-independent, e.g., teamwork or communication skills. According to learning

theories (Ellis et al., 1997; Shell and Brooks, 2007) the four main elements that affect how a

person learns are: (1) what the student already knows (knowledge), (2) how able/intelligent

the student is (ability), (3) how motivated the student is (motivation), and (4) the emotional

state of that student (emotion). The cognitive components that represent these factors are:

(1) the crystallized intelligence as accumulated knowledge stored in long-term memory,

(2) fluid intelligence as represented by working memory capacity, and (3) motivation as

represented by working memory allocation (Shell and Brooks, 2007), and (4) emotional

state (Ellis et al., 1997). Next, we define these elements in greater detail. Shell and Brooks

(Shell and Brooks, 2007) use the term knowledge to refer to the accumulated knowledge in

a student’s long-term memory.

The ultimate result of learning would occur as the improvement of the knowledge of

the students. Shell and Brooks (Shell and Brooks, 2007) use ability to represent the cog-

nitive ability or intelligence of a person. They suggest that there are two different parts

of ability: fluid intelligence and crystallized intelligence. The fluid intelligence is a fixed

entity that deals with general cognitive capacity and crystallized intelligence represents the



www.manaraa.com

50

accumulated knowledge of the student. Furthermore, the fluid intelligence is basically the

working memory of a student (Shell and Brooks, 2007). However, there is a difference

between the absolute working memory capacity a person has and the amount of working

memory capacity he or she has available at a particular time for a particular task. The

behavior of a person while working on a task and the improvement in his or her knowledge

due to learning by working on that task depend upon the amount of working memory that

person has available at that time. Further, the amount of working memory available to any

person at a time is determined by: (1) his or her existing knowledge for that task, (2) his or

her motivation to work on that task, and (3) emotion (Shell and Brooks, 2007). Motivation

determines why we do what we do (Shell and Brooks, 2007). In other words, motivation is

the process whereby goal directed behavior is instigated and sustained. Finally, the emo-

tion of a student determines whether the students are feeling happy or sad. So, we write

our first observations as:

Observation 1: A student’s improvement of knowledge of a topic is mainly affected

by: (1) his or her existing knowledge, (2) ability, (3) motivation, and (4) emotion.

Observation 2: The amount of working memory available to a student determines how

much he or she can learn.

Observation 3: The working memory of a student interacts with his or her prior knowl-

edge and new information (regarding a task) to produce learning and behavior.

Observation 4: A student’s available working memory for a task can be described as

his or her ability for that task.

Although the aforementioned four components that affect learning are cognitively dis-

tinct from one another, there are combinatorial effects (Shell and Brooks, 2007): (1) the

prior knowledge stored in the long-term memory interacts with the working memory to

produce learning, (2) available amount of working memory limits how much prior knowl-

edge and information can be used/activated at any time, (3) the amount of working memory

is determined by motivation, extent of prior knowledge, and emotion, and (4) as knowledge
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increases, it increases the effective working memory capacity allowing acceleration of fu-

ture learning processes. Finally, according to the recent research work on perceptual and

motor acquisitions (Fitts, 1964; Anderson, 1982) the pace of skill acquisition for a learner

accelerates in the beginning and slows down to a stable state, leading to:

Observation 5: A student’s available working memory for a topic is proportional to his

or her: (1) knowledge on that topic, and (2) motivation to learn that topic. Furthermore, this

available working memory is inversely proportional to the emotional state of that student.

Observation 6: As the knowledge of a student on a particular topic increases, his or her

learning outcome for that topic would increase at the beginning and slow down to a steady

state after a certain amount of time.

4.1.2 Peer-Based Learning

When a student is working with his or her peer to solve some assigned task, the student and

the peer may learn from each other about that task. The possible learning scenarios between

two interacting peers are described by (Inaba et al., 2000)(Table 4.1): learning by obser-

vation, learning by teaching/guiding, learning by being taught, learning by reflection/self-

expression, learning by apprenticeship, learning by practice, and learning by discussion.

From these peer-based learning scenarios, we observe that the prior knowledge of the par-

ticipating students plays an important role in deciding what type of learning scenarios may

occur. For example, learning by teaching (and learning by being taught) is more common

among two students where one student with more prior knowledge teaches his or her peer

who has less prior knowledge. Furthermore, a large difference between two interacting

students’ prior knowledge about how to solve a certain task can hinder their learning. This

effect is described in Vygotsky’s zone of proximal development (ZPD) theory (Vygotsky,

1978). So we write our next observation as:

Observation 10: Two students may learn about a topic from their interactions (Ta-

ble 4.1) when the content of prior knowledge they have are not too different from one
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another.

Table 4.1: Possible Learning Scenarios among Peers

Observation Student-Peer Knowledge Learning by
7 High-High Observation, Reflection, Prac-

tice, & Discussion

8 High-Low or Low-High Observation, Teaching, Being
Taught, Reflection, Practice, &
Discussion

9 Low-Low Observations

4.1.3 Collaborative Learning

The term “collaborative learning” is an instruction method in which students at various

performance levels work together in small groups toward a common goal (Dillenbourg,

1999). Stahl (2004) describes the following properties of collaborative learning:

Observation 11: The collaborative knowledge building is a cyclic process that feeds

on itself.

Observation 12: This collaborative knowledge building cycle is a hermeneutic cycle,

meaning, “one can only interpret what one already has an interpretation of”.

Observation 13: Individual knowledge of a student is gained from collaborative knowl-

edge of his or her group members through interaction. That collaborative knowledge is in

turn produced by individual knowledge of the interacting group members.

Kreijns (Kreijns et al., 2003) describe the interaction between students as the key to

collaboration among group members. Furthermore, researchers (der Linden and Renshaw,

2001) suggest that collaborative learning occurs from the exchange of dialogues among the

students.

Observation 14: The collaboration among the members of a group of students occurs

due to their interaction/discourse with each other.
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Zumbach (Zumbach et al., 2005) describes a collection of dyadic (between two stu-

dents) interactions for a group of students which were reported by researchers in the CSCL

community. An example of interactions mentioned in (Zumbach et al., 2005) is: (a) stu-

dent a proposes a solution for the assigned task, (b) student b accepts or proposes another

solution to the task. Thus:

Observation 15: The compilation of discourse/interaction patterns presented by Zum-

bach (Zumbach et al., 2005) describes a typical dyadic (e.g., between two students) learning

scenario in terms of a chain of action-reaction patterns.

The quality the discourse/interactions within a group depends on the affective state of

a student (Issrof and Soldato, 1996) and his or her social relationship with other students

in the group. Jones and Issroff (Issroff and Jones, 2005) and Vass (Vass, 2002) report that,

students who are friends have established ways of working which are implicitly understood

rather than explicitly discussed. In addition, (Kreijns et al., 2003) mentions that social

relationships contribute to common understanding, an orientation towards cooperation, and

the desire to remain as a group. Finally, as reported in (Khandaker et al., 2006), the students

form their view of other students due to the type and extent of collaboration they receive

from their peers. Clear and Kassabova (Clear and Kassabova, 2005) further report that in

collaborative learning settings it is common to have students whose motivation is affected

by the motivation of other group members. When the other group members are motivated

to learn and to collaborate, it increases the motivation of a student who had low motivation

when he or she joined the group, and vice versa. We derive from the above the following

observations:

Observation 16: Good social relationship improves the quantity and quality of inter-

actions among group members.

Observation 17: The quantity and quality (i.e., learning outcome) of interactions among

a group of students vary over time due to factors internal and external to the classroom envi-

ronment. Improvement in social relationship among the members of a group improves the
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quality of collaborations among them. On the other hand, when a student group member

experiences distracting factors, that experience reduces the quality of his or her collabora-

tion with other members.

Observation 18: A group member’s motivation is impacted (positively or negatively)

by his or her group members’ motivations.

Observation 19: Social relationship between a student and his or her peer (as perceived

by the student) change according to the frequency, extent, and quality of collaboration (e.g.,

how many times did my peer helped me).

4.1.4 Scaffolding

Bruner (Bruner, 1985) and Cazden (Cazden, 1983) define scaffolding as the act of provid-

ing assistance to a child so that he or she is able to carry out a task (e.g., solve a problem)

that he or she cannot do by herself. Over time, the concept of scaffolding has been intro-

duced into traditional classrooms to aid learners to achieve difficult learning objectives and

complete difficult tasks (Khandaker et al., 2006) where tools and software are used to (1)

offer structure and support for completing a task and (2) promote peer interactions to en-

able peers to support each other’s learning. In the first type of scaffolding, the students are

provided information about how to better approach to solve the task that they are having

difficulty with. In the second type of scaffolding, the peer support of a student is enhanced

in the hope that those peers would provide guidance and information for that student to

help him or her solve that task. Researchers in the CSCL community are now utilizing

scaffolding in the form of incorporating structure of learning activities (e.g.,(Harrer et al.,

2008)) and improving peer support (e.g.(Liu et al., 2008)). As CSCL researchers (e.g.,

(Khandaker et al., 2006; Liu et al., 2008) note that due to being in different zones of prox-

imal development, the learners benefit most when the scaffolding is targeted toward their

zone of development. So, one of the recommendations provided to the CSCL practitioners

is to customize the scaffolding to specific learners’ needs. Hence:
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Observation 20: Scaffolding in the CSCL environment can be provided by: (1) pro-

viding structure and support for completing tasks and (2) improving of peer support.

Observation 21: Scaffolding in the CSCL environment may be used to improve the

knowledge of the learners regarding the assigned task.

Observation 22: Learners in a CSCL environment benefit more when the provided

scaffolding is targeted to their zone of proximal development.

4.2 Simulation Environment & Algorithms

The SimCoL environment is defined as a 3-tuple: E = 〈T, I,H〉. Where T is a set of tasks,

I is an agent who simulates the teacher, and H = {h1, . . . , hns} is a set of agents who sim-

ulates the students in a collaborative classroom environment. In this section, we first define

the tasks T . Then, based on the observations presented in Section 4.1, we describe the at-

tributes and the behavior of agents H who represent the students in SimCoL. Furthermore,

we describe how the simulated teacher I forms groups of simulated students and carries

out CSCL classroom sessions in the SimCoL environment using a set of simulation steps.

Finally, we describe the collaboration process of the simulated students H in a group in

SimCoL using a set of simulation steps and discuss how their attributes change.

4.2.1 Task

The tasks in SimCoL represent the problems and exercises that are solved by the students

in a CSCL environment. The set of tasks is denoted by, T = {T1, . . . , Tnt} where,

Tj = 〈ctj, dij, tlj,−→sqj〉 (4.1)

Here, ctj denotes the concept of the task. This concept represents the subjective knowl-

edge required to solve the task. dij ∈ R, is the difficulty of the task as determined by the

simulated teacher. tlj is the time limit within which the task is to be completed. −→sqj is a
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vector representing the simulated student groups’ (who are working on the task) view of

the solution quality of the task Tj at time t.

4.2.2 Simulated Student

We represent the model hmi,t of each simulated student hi ∈ H in SimCoL by a 6-tuple:

hmi,t = 〈Ki,t, ABi,t,MOi,t, EMi,t, SRi,t, TSQi,t〉 (4.2)

where, Ki,t = {〈ctj, exi,j,t〉|∀Tj ∈ T} is the knowledge of simulated student hi at time

t with ctj representing the concept of Tj and exi,j,t ∈ R is the expertise, i.e., the amount

of knowledge the simulated student has about the concept. The goal of simulated student

collaboration is to increase the value of this expertise. ABi,t = {ABi,j,t|∀Tj ∈ T} with

ABi,j,t ∈ R, is the ability of hi at time t for task Tj . MOi,t ∈ R, is the motivation of hi

at time t. EMi,t ∈ R, is the emotional state of simulated student hi at time t. SRi,t =

{sri,k,t|hk ∈ H − hi} where sri,k,t ∈ R is the social relationship between hi and hk at time

t as perceived by hi. TSQi,j ∈ R denotes the target solution quality of Tj of hi at time t.

We have included Ki,t, ABi,t, MOi,t, and EMi,t in the model according to Observation

1 and included SRi,t according to Observations 16 and 17. Also, combining Observations

4 and 5, we assume that the ability of a simulated student is related to his or her knowledge,

motivation, and emotion in the following way:

ABi,j,t ∝ wabx · exi,j,t + wabm ·MOi,t − wabe · |EMi,t| (4.3)

where wabx, wabm, and wabe are weights. According to Equation 4.3, the ability of a

simulated student for a particular task at any time is proportional to the sum of his or her

expertise on the concept of that task and motivation minus the absolute value of his or her
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emotional state. We also define the target solution quality of a simulated student with:

TSQi,j,t ∝ ABi,t (4.4)

So, a simulated student’s target of the quality of the solution of the assigned task is

proportional to his or her ability for that task. According to Observations 3 and 4, the

ability of a simulated student determines how much of his or her existing knowledge can

be activated to produce behavior (i.e., effort to solve the task) and learning. Therefore,

given the same time limit tlj for a task Tj , a simulated student with higher ability would

be able to solve the assigned task better than a simulated student with lower ability. So, we

assume that the simulated students have targets of the final solution quality according to

their own abilities.

4.2.3 Teacher

The teacher I in SimCoL acts as the coordinator of the CSCL sessions. The teacher de-

livers instructions, forms groups, and assigns collaborative tasks. In SimCoL, we have

implemented three different group formation methods: random, Hete-A (Gogoulou et al.,

2007), and VALCAM (Soh, Khandaker and Jiang, 2006) group formation method.

Algorithm 4.1 shows how the teacher carries out the CSCL session through a set of sim-

ulation steps. First, the teacher initializes the classroom (tasks, group formation scheme,

how often scaffolding should be provided, and how many groups would receive scaffold-

ing). Then, for each initialized task, the teacher: (1) initializes a collaborative session (Step

2-4), forms simulated student groups (Step 8-12), and announces the start of the collabo-

rative session to all simulated students (Step 13). Then until the collaborative session is

over, the teacher periodically sorts the groups according to their current achieved solution

quality of the task (Step 16) and then selects the groups who have the lowest solution qual-

ity. Those selected groups are then provided scaffolding (Step 18). Finally, the teacher
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announces the end of the collaborative session when the time limit for the current task is

over (Step 23).

Algorithm 4.1 Simulation Steps of Teacher
Require: i) T ← {T1, . . . , Tnt}, ii) Gfs ← group formation scheme, iii) tsc ← scaf-

folding period, nsc ← |Gsc| · rsc, iv) students H ← {h1, . . . , hn}, and v) agents
Sa← {Sa1, . . . , San}

1: for all Tj ∈ T do
2: Initialize collaborative session sj t← 0
3: G← {G1, . . . , Gm}
4: ng ← bHm/mc
5: Announce task Tj to H
6: if Gfs = Rn then
7: Form random group for H
8: else if Gfs = Ha then
9: Form Hete-A group for H

10: else if Gfs = Hv then
11: Form VALCAM group for H
12: end if
13: Announce start of session sj to H
14: while t < tlj do
15: if mod(t, tsc) = 0 then
16: Sort(ASC) G according to tsaj,t
17: for t← 0 to nsc do
18: Provide scaffolding to Gi

19: end for
20: end if
21: t← t+ 1
22: end while
23: Announce end of collaborative session sj to H
24: end for

4.2.4 Assistant Agents

The student-assistant and teacher-assistant agents have been incorporated in SimCoL to im-

plement various agent-based coalition formation algorithms. Each student-assistant agent

in SimCoL is assigned to a simulated student and it monitors the change in that assigned

simulated student’s: (1) expertise gain and (2) social relationship with other students. The

teacher-assistant agent is assigned to the teacher to (1) assign and monitor student collab-
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orative performances and assign them virtual currency according to that performance and

(2) communicate with the student-assistant agents to form groups using VALCAM (Soh,

Khandaker and Jiang, 2006).

4.2.5 Collaboration and Scaffolding

Following Observations 14 and 15, in SimCoL, we simulate the collaborative behavior (i.e.,

collaboration to solve the assigned task and to improve expertise) of a group of simulated

students using a series of dyadic interactions among the group members. Here, we de-

scribe how those interactions occur in SimCoL. First, we define the following functions

that dictate the behavior of the simulated students simulating the collaborative learning in

SimCoL. Here, we assume that two simulated students hi and hk with models hmi,t and

hmk,t are working in a group Gm to solve task Tj and all variables wx,y,z are weights:

Motivation Update (based on Observation 18):

MSU(MOi,t, Gm) =

[
womo ·MOi,t + wgmo ·

∑
k∈Gm−hi

MOk,t

|Gm| − 1

]
(4.5)

where womo and wgmo are weights, MOi,t ∈ hmi,t

Collaboration Probability (based on Observation 16):

CP (hmi,t, hmk,t, Tj,t) = wcsr · sri,k,t + wcsq · (sqj,t − TSQi,j,t) (4.6)

where wcsr and wcsq are weights,sri,k,t ∈ SRi,t, TSQi,j,t ∈ hmi,t, and sqj,t ∈ Tj .

Collaboration Cycle (based on Observation 15): cci,k,t,j = {acti,k,t,j, rcti,k,t,j, lcti,k,t,j} ⊆

CCi,k,t,j denotes a collaboration cycle completed by hi with hk at time t for task Tj .

Here, acti,k,t,j denotes an utterance of action, rcti,k,t,j denotes an utterance of reaction

in reply to the action acti,k,t,j , and lcti,k,t,j denotes the reaction in reply to the reaction
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rcti,k,t,j . cii,k,t,j ∈ CIi,k,t,j denotes a collaboration cycle initiated by hi but declined by hk.

CYi,k,t,j = {CCi,k,t,j, . . . , CCk,i,t,j, . . . , CIk,i,t,j} denotes the set of all collaboration cycles

between hi and hk regarding Tj .

Solution Quality Update:

SQU(hmi,t, hmk,t, cci,k,t,j) =


0 If psq ≥ ksq

abi,j,t+abk,j,t
dij

Otherwise
(4.7)

where cci,k,t,j is a collaboration cycle, κsq, psq ∈ R denotes the solution quality update

probability threshold and a random number that is drawn from a uniform random distribu-

tion respectively. abi,j,t ∈ ABi,t ∈ hmi,t, abk,j,t ∈ AB(k, t) ∈ hmk,t, and dj ∈ Tj .

Human Expertise Update (based on Observation 3,4,7-10 and 13):

HEU(hmi,t, hmk,t, cci,k,t,j) =


0 IfDE(hmi, hmk, Tj) > κzone

whab · abi,j,t+

whde ·DE(hmi,t, hmk,t), Tj) otherwise
(4.8)

where,

DE(hmi,t, hmk,t, Tj) = |exi,j,t − exk,j,t| (4.9)

In Equation 4.8, cci,k,t,j is a collaboration cycle, κzone is the zone of proximal develop-

ment constant (Section 4.1.3), whab and whde are weights, abi,j,t ∈ ABi,t, exi,j,t ∈ Ki,t ∈

hmi,t, and exi,k,t ∈ Kk,t ∈ hmk,t.

Social Relationship Update (based on Observation 19):

SRU(CYi,k,t,j) ∝ [|CCi,k,t,j| − |CIi,k,t,j|] / [|CCi,k,t,j|+ |CIi,k,t,j|] (4.10)
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where CCi,k,t,j, CIi,k,t,j ∈ CYi,k,t,j are collaboration cycle sets.

Scaffolding Effect (based on Observation 20-22):

SEU(hmi,t, ctj, SOj) ∝


1

1+|exi,j,t−soli,j | If psca ≥ κsc

0 otherwise
(4.11)

where SOi,j = 〈ctj, solj, cscj〉 is the scaffolding object, ctj ∈ Tj , solj denotes the level

of expertise for the student the scaffolding is designed for, cscj denotes the cost (e.g., time

and effort required to design the object) of the scaffolding, psca is a probability value drawn

from a uniform distribution, and κsc is the scaffolding threshold.

Algorithm 4.2 shows the simulation steps of a student in SimCoL with the various for-

mulas that are used by the agents in parenthesis. During initialization, the student receives

its group assignment and the task from the teacher (Algorithm 4.1). Then the student up-

dates its own motivation according to other group member’s motivations, and its ability.

During the session, the student tries to collaborate with its group members if the quality

of the solution is less than its expected solution quality (Step 2) or if someone else in the

group wants to collaborate (Step 9). In both of these cases, whether the collaboration is

successful or not depends on the collaboration probability (Step 10). During the collabo-

rative session, if the student receives scaffolding from the teacher (Step 13) in the form of

a scaffolding object, it updates its expertise. Finally, when the collaborative session ends,

the student updates its own view of its social relationship with all its group members (Step

19).
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Algorithm 4.2 Simulation Steps of Student hi
Require: i) Initialize group Gm, Tj , update motivation and ability

1: while Session sj is not over do
2: if sqj,t < esqi,k,j then
3: Propose collaboration to randomly chosen hk ∈ Gm − hi
4: if hk agrees then
5: Complete and store collaboration cycle in CCi,k,t,j , update solution quality and

expertise
6: else
7: Store failed collaboration cycle in CIi,k,t,j
8: end if
9: if Received collaboration request from hk then

10: if CP (hmi,t, hmk,t, Tj,t) > κch then
11: Complete and store collaboration cycle in CCk,I,t,j , update solution quality

and expertise
12: end if
13: if Received Scaffolding SOj then
14: Update Expertise
15: end if
16: end if
17: end if
18: end while
19: Update social relationship

4.3 Implementation

The SimCoL environment was implemented using the Java version of the Repast (Repast,

2009)—a multiagent simulation toolkit. Table 4.2 describes: (a) the categorizations and

the ranges of the randomly generated values in SimCoL, i.e., the student attributes and the

weights and constants used in the equations in Section 4.2. Figure 4.1 shows the deploy-

ment diagram and Table 4.2 shows the input, output, and control parameters of SimCoL.



www.manaraa.com

63

Figure 4.1: Deployment Diagram of SimCoL

Table 4.2: Categorizations, Distributions, Weights, and Con-
stants

Attribute Category Generated from Normal
Distribution with

Task Difficulty (Equa-
tion 4.1)

Low[0.0, 0.3),
moderate[0.3, 0.6),
and high [0.6, 1.0)

µdi = 0.5, σdi = 0.1, and
range [0, 1]

Expertise (Equa-
tion 4.2)

Low [0, 0.3), moder-
ate [0.3, 0.6), and high
[0.6, 1.0]

µex = 0.3, σex = 0.25, and
range [0, 1]

Ability (Equation 4.2) Low [0, 0.3), moder-
ate [0.3, 0.6), and high
[0.6, 1.0]

Calculated using 0 with range
[0, 1]

Motivation (Equa-
tion 4.2)

Low[0, 0.2),
moderate[0.2, 0.8),
and high [0.8, 1.0]

µmo = 0.4, σmo = 0.25, and
range [0, 1]

Emotion (Equation 4.2) Sad [−1.0,−0.5), neu-
tral [−0.5, 0.5), Happy
[0.5, 1.0]

µem = 0.0, σem = 0.5, and
range [0, 1.0]

Social Relationship
(Equation 4.2)

Unknown [0, 0.2), fa-
miliar [0.2, 0.8), and
friend [0.8, 1.0]

µsr = 0.4, σsr = 0.25, and
range [0, 1]
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Attribute Category Generated from Normal
Distribution with

Equation 4.3 Weights: wabx = 0.4, wabm =
0.4, and wabe = 0.2

Equation 4.4 Proportionality constant: 0.9

Equation 4.2.5 Weights: womo = 0.8 and
wgmo = 0.2

Equation 4.6 Weights: wcsr = 0.5 and
wcsq = 0.5

Equation 4.7 Proportionality constant:
0.001

Equation 4.8 Weights: whab = 0.8 and
whde = 0.2 and proportional-
ity constant: 0.001

Equation 4.9 Proportionality constant:
0.001

Collaboration threshold κch = 0.2

Zone of proximal de-
velopment threshold

κzone = 0.99

4.4 Results

The goal of our experiment is four-fold: (1) discussing how SimCoL is able to identify

and reveal the complex relationship between the variables (i.e., student attributes) of a

computer-supported collaborative learning environment, (2) comparing the emergent phe-

nomenon of student performance in SimCoL with that of the published CSCL results, and

(3) providing evidence of the validity of SimCoL simulation environment, and (4) relate

our findings to validate the assumptions (Section 3.1 in Chapter 3) and the design princi-

ples (Section 3.2 in Chapter 3) discussed in the iHUCOFS framework. In Section 4.4.1, we

discuss how the social relationships among the students in SimCoL impact their collabora-

tions. In Section 4.4.2, we describe the experiment that shows the inter-dependence of the

students’ attributes on their collaborative learning outcome. In Section 4.4.3, we study the
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Figure 4.2: Input, Output, and Control Parameters of SimCoL

impact of group formation and group size on student learning.

This allows us to: understand the usefulness of SimCoL in carrying out what-if sce-

narios in CSCL environments and correlate the observed patterns of student behavior in

SimCoL with that of the reported CSCL studies. In Section 4.4.5, we compare and validate

the emergent patterns of student behavior in SimCoL with that of the observed student be-

haviors in the reported CSCL studies. Notice that, all of our experiments are replicated for

10 simulation seeds.

4.4.1 Collaboration among Learners

Here, we ran the simulation for 100 students for 2000 simulation ticks for each run by

varying the values of two attributes at a time. We then plotted the successful collaborations

of the students against their changing attribute values. Among all attributes, we have found

that the social relationship among the group impacts students’ collaboration efforts the

most. Figure 4.3 shows the results and Table 4.3 shows the skewness and kurtosis values.
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Figure 4.3: Successful student collaborative cycles vs. average student social relationship

Table 4.3: Skewness and Kurtosis of Distributions of Collab-
oration Cycles

Social Relationship 0.2 0.4 0.6 0.8 1.0
Skewness 1.2 1.8 0.2 -0.1 -0.8

Kurtosis 3.2 6.4 2.1 2.3 3.3
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This indicates that as the collaborative learning researchers (Clear and Kassabova,

2005) mention, social relationship among the students is a critical factor in improving the

collaborations among them. Furthermore, the lack of the strong relationship between the

other attributes like expertise can be explained by our formulation of collaboration prob-

ability (Equation 4.6). The two key factors that determine a student’s participation in a

collaboration cycle is the target solution quality (Equation 4.7) and social relationship.

However, if the task solution quality is high (due to other members’ contributions), a stu-

dent’s expected solution quality is then mainly determined by his or her social relationship

with other group members. This result portrays a common scenario where students often

refuse to collaborate/contribute when they see other members solving the task (Roberts

and McInnerney, 2007). This inspires us to include social relationship of the agents in the

iHUCOFS framework’s (Section 3.3 in Chapter 3) group formation mechanism.

4.4.2 Compound Impact Analysis

This compound impact analysis allows us to: (a) investigate how the students belonging to

the different categories of an attribute respond to the changes in another attribute, e.g., how

do the student with low expertise react to a change in their motivation, and (b) investigate

whether a student’s lower value in an attribute can be compensated by a higher value. For

this experiment, we ran the simulation for 100 students for 2000 simulation ticks for each

run by varying the values of two attributes at a time. Figure 4.4 and Figure 4.5 show the

average and standard deviation of student expertise gain for students with low, medium, and

high expertise against changing motivation. Figure 4.6 shows the average and standard de-

viation of student expertise gain for students with low, medium, and high expertise against

changing social relationship. Table 4.4 and Table 4.5 show the skewness and kurtosis of

the students with low, medium, and high expertise in Figure 4.4 and Figure 4.5.

According to Figure 4.4, we see when the average motivation of the students is in-

creased, the students of all categories (low, medium, and high) of expertise are able to
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improve their expertise gain and there are students who fall behind (unchanged standard

deviation). This is to be expected as dictated by expertise update equation Equation 4.8

where the expertise increase is determined by the motivation and difference in expertise.

Furthermore, the unchanged standard deviation indicates that there are students in all three

cases (low to high motivation) who cannot gain expertise due to the increased motivation.

Figure 4.6 shows that as the social relationship of students improve, their expertise

gain improves at first, and then that rate of improvement slows down to zero. Further-

more, Figure 4.6 shows that the standard deviation of the students expertise gain remains

somewhat unchanged with the increasing social relationship. This occurs due to our use of

student social relationship while calculating the collaboration probability among two stu-

dents (Equation 4.6). The expertise gain of the students in the group depends on how well

they collaborate. As the social relationship among the students starts to increase from ini-

tial lower value, the probability of them collaborating increases. As a result, they are able

to gain more expertise. However, when their social relationship values are near maximum

and all students in every group are collaborating, increase in the social relationship further,

does not impact their expertise.

Figure 4.4: Avg. student expertise gain vs. average student motivation for low, medium,
and high expertise (left to right) students.
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Figure 4.5: StDev. of Student Expertise Gain vs. Average Student Motivation for Low,
Medium, and High Expertise (left to right) Students.

Table 4.4: Skewness and Kurtosis of the Distributions of Ex-
pertise Gain (Figure 4.4)

Social Relationship Low Medium High
Skewness 0.6 0.5 1.3

Kurtosis 2.3 3.0 4.9
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Table 4.5: Skewness and Kurtosis of the Distributions of Ex-
pertise Gain (Figure 4.5)

Social Relationship Low Medium High
Skewness 0.6 0.5 1.3

Kurtosis 2.3 3.0 4.9

Figure 4.6: Standard Deviation of Student Expertise Gain vs. Average Student Social
Relationship for Low, Medium and High Expertise (left to right) students.

Our observations here provide us the insight that, the critical student attributes in a

CSCL setting often impact (negatively and positively) one another’s contributions to a stu-

dent’s collaboration and learning. This observation is in sync with the current theories

that describe the collaborative learning mechanism being affected by a variety of student

attributes like motivation (Shell and Brooks, 2007; Issrof and Soldato, 1996; Clear and

Kassabova, 2005). Thus, while setting up the collaborative learning environment, or when

evaluating the outcome, it is important to look at all of those critical attributes together

instead of in isolation as often discussed in the results of current CSCL research (Kreijns

et al., 2003; Issroff and Jones, 2005; Gogoulou et al., 2007; Soh, Khandaker and Jiang,

2006). In other words, while determining the impact of a collaboration script, group for-

mation scheme, or other CSCL tool, the students’ learning outcome alone may not be a

sufficient indicator. Instead, we should also look at factors like motivation and social rela-

tionship that could have influenced the students’ expertise gain.
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4.4.3 Impact of Group Formation Method

In this section, we study the effect of two teacher-controlled aspects of a typical CSCL en-

vironment, i.e., (1) the group size and (2) the group formation scheme, on the average ex-

pertise gained by the students. During the simulation, the student groups in this experiment

were formed using Random, Hete-A, and VALCAM group formation methods with the

group size selected from the range [2, 4]. VALCAM is an agent-based algorithm of group

formation which uses a multiagent system to form student groups that brings together ex-

perts with non-expert students where the members have high social relationships. Hete-A

algorithm is a non-agent-based algorithm that forms heterogeneous groups. In Hete-A, the

students are first categorized by assigning them to a matrix whose dimensions represent

the attributes of a student. Once the students are categorized, the Hete-A algorithm builds

heterogeneous groups by selecting students with the highest difference of attribute values

according to their position in the matrix. Here, the Hete-A algorithm was used with the

motivation and expertise as the two matrix dimensions. We first ran the simulation with the

parameters described in Table 4.2 for 30 students for 2000 ticks with expertise distribution

mean µex = 0.8, expertise distribution standard deviation σex = 0.8, and collaboration

threshold κch = 0.5, for a set of 30 students, for 10 different tasks and for 2000 simulation

ticks, where the students mean expertise and social relationship was set to the mean initial

values reported in (Soh, Khandaker and Jiang, 2006). Figure 4.7 shows that the students

in the VALCAM-formed groups performed better than the randomly formed and HETE-A

formed groups.

The improvement in student performance in VALCAM-formed groups was reported

in (Soh, Khandaker and Jiang, 2006), so this result reproduces those observations. This

improvement of student performance in VALCAM-formed groups can be explained by the

way VALCAM forms student groups that contain expert and non-experts who have high so-

cial relationships amongst themselves. Since, the collaboration probability (Equation 4.6)

and therefore the collaborative learning in SimCoL is determined by the expertise differ-
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ence (Equation 4.8) and social relationship (Equation 4.2), VALCAM-formed groups in

SimCoL were able to collaborate better (i.e., higher number of successful collaborative cy-

cles) yielding higher collaborative learning outcome. These results suggest that by setting

the initial classroom conditions (e.g., student attributes) in SimCoL like a CSCL classroom,

we could execute what-if scenarios by running simulations and compare the performances

of group formation mechanisms.

Figure 4.7: Average expertise gain (y-axis) for varying group sizes (x-axis).

4.4.4 Cost and Impact of Scaffolding

In this experiment, we investigate how the individual and group scaffolding improves the

expertise of the students when they are collaborating in various types of groups. To col-

lect data, we ran the simulation with the same default set of parameters Table 4.2 for 180

students for 2000 simulation ticks. We calculated: (1) the average improvement in the

expertise gain of the students and (2) the cost incurred for providing scaffolding for in-

dividuals and groups. For a group in this experiment, one scaffolding object is used per

group for group scaffolding (i.e., scaffolding cost is required for one scaffolding object)

and one scaffolding object per group member (i.e., scaffolding cost is equal to the sum of

all generated scaffolding objects) is used for individual scaffolding. Figure 4.8(a) shows
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that the students in all groups are able to improve their expertise more from the individual

scaffolding than from the group scaffolding. This is expected, since: (1) individual scaf-

folding addresses individual students’ needs, and (2) according to our design of scaffolding

(Equation 4.11), a student’s expertise is improved most when the scaffolding is targeted

towards his or her expertise level.

Figure 4.8(b) shows that for all three types of groups, the group scaffolding yielded

more expertise gain per unit cost than the individual scaffolding. The cost of scaffolding

denotes the time and effort required for providing scaffolding to the students. Providing

individual scaffolding requires more cost since each individual student has to be modeled

and different types of scaffolding have to be provided to the students according to their ex-

pertise level. On the other hand, group scaffolding requires less cost since the scaffolding

action is more generic and only one type of scaffolding is provided to the entire group. But

unexpectedly, the group scaffolding is shown to be more economical in terms of expertise

improvement per unit cost. Upon closer analysis, this can be explained by the cyclic and

convergent nature of the collaborative knowledge building process (Observation 11). Due

to this cyclic nature, collaborative knowledge is transferred among the group members due

to their interactions throughout the collaborative session. Furthermore, our non-adaptive

scaffolding process periodically provides scaffolding to a fixed number of student groups

by first sorting them according to their performances. However, near the end of the collab-

orative cycle, due to the heterogeneous nature of groups, there are some students who have

already reached near-maximum expertise level. So, scaffolding for such group members

is no longer effective. Thus, individual and group scaffolding do not yield any expertise

improvement for those high-expertise group members. But, for those high-expertise group

members, the individual scaffolding incurs a much higher cost than would the group scaf-

folding. As a result, the improvement of expertise per unit cost for individual scaffolding

is smaller than the group scaffolding. These results indicate that although targeted individ-

ual scaffolding may improve the expertise gain of a set of students more than group-based
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scaffolding, the former is less-economical when applied in a non-adaptive manner.

Figure 4.8: (a)(top) Average expertise gain for individual and group scaffolding (b) (bot-
tom) Average expertise gain per unit cost for individual and group scaffolding.

4.4.5 Validity and Correlation with CSCL Results

Here we validate SimCoL’s design by comparing its simulation results with published col-

laborative learning patterns.

Variance in Learning Rate. As reported in (Spoelstra and Sklar, 2008), high-ability

students have higher learning rates than low-ability students because they are able to grasp,

process, and internalize information received during the collaboration process. When we

compared the learning rates of high/low ability learners in SimCoL, we found that the high-

ability students learn at a faster rate than the low-ability students (0.1 vs. 0.3). Convergence

of Learning Rates. CSCL researchers (Cazden, 1983) described the collaborative knowl-

edge building as a cyclic process that converges to a final value. Researchers (Spoelstra and

Sklar, 2008; Stahl, 2004) also described that the rate at which the students gain expertise is

faster in the beginning and then slows down over time. The total expertise gain curve shown

in Figure 4.9 has two properties: (1) the total expertise gain of the students converges to
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a final value and (2) the rate of change of the curves is higher in the beginning and slows

down at the end. Furthermore, the same convergence pattern is observed when the simula-

tion run is repeated with Hete-A group formation method. So, the knowledge gain of the

students in SimCoL follows patterns described by other CSCL researchers (Roberts and

McInnerney, 2007; Clancey, 2004).

Figure 4.9: Total expertise gain of students collaborating in groups formed by random
group formation method.

Correlation with Observed CSCL Results. Here we try to compare our simulation

results with CSCL results published in (Soh, Khandaker and Jiang, 2006). For this com-

parison, we have first mimicked a simulated environment as the CSCL classroom (Soh,

Khandaker and Jiang, 2006) by setting the parameters of SimCoL equal to the parame-

ters of the CSCL classroom (Soh, Khandaker and Jiang, 2006), i.e., we set: (1) the mean

expertise of the students in SimCoL as 0.7, (2) number of tasks as 5 for each collabora-

tive learning session, (3) number of students as 11, and (4) mean social relationship of the

students as 0.9. Then similar to the CSCL classroom, we have simulated 4 collaborative

sessions in SimCoL. Then we have calculated the correlation between the actual CSCL

results and simulated results in SimCoL. Table 4.6 shows that for both expertise gain and
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social relationship change, the correlation was significant and high. However, as we have

discussed in Section 4.1.1, student attributes like motivation may also impact the student

expertise gain which we have not collected data upon. So, this correlation can be made

stronger with the consideration of those factors which is in our future plan (Chapter 7).

Table 4.6: Correlation between Simulation Data and Ob-
served CSCL (Soh, Khandaker and Jiang, 2006) Results

Attribute Correlation
Student Expertise 0.83

Student Social Relationship 0.97

4.5 Conclusions

The evolving domain of learning theories and CSCL systems (Stahl et al., 2006) indicate

that a simulation environment could provide a low-cost tool to the researchers and teachers

to better understand the impact of instructional approaches. Here we have proposed Sim-

CoL, an agent-based tool for simulating the collaborative learning in a CSCL system. We

have described the design and implementation of the SimCoL environment and its agents

using observations reported by the researchers working in the individual, peer-based and

collaborative learning domains. The overall simulation results of the SimCoL environ-

ment is consistent with previously reported collaborative learning patterns. Furthermore,

our results hint that the SimCoL environment allow the researchers to gain better insights

into the impact of: (1) individual student attributes, (2) various agent-based and non-agent

based group formation algorithms, (3) different types of scaffolding processes on the col-

laborative learning outcome of students, and (4) CSCL and collaborative learning on real

classrooms in particular, and any human-computer environments where online collabora-

tive activities take place among users with diverse behaviors. When compared with the
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assumptions (Section 3.1 in Chapter 3) and the design principles (Section 3.2 in Chapter 3)

discussed in the iHUCOFS framework, our results provide us the following insights. First,

the group formation method has a significant impact on the performances of the students

which inspires us to focus our efforts toward designing and implementing a sophisticated

group formation method that improve student performances. Second, a student group’s per-

formance and learning can be significantly enhanced by providing scaffolding to the group

or the individual students. This encourages us to use implicit or explicit methods to scaf-

fold the student coalitions so that they can improve their performances over time. Third,

the group formation methods’ ability to form groups largely depends upon the students’

attributes. Since these attributes can be difficult to measure accurately in the real world,

it is important to take the uncertainties arising from that inaccurate measurements while

forming student groups. Finally, due to the significant impact of the social relationship, we

may have to accommodate the social relationship of students in our future instantiations of

the iHUCOFS framework.

4.6 Future Work

Our future work involves running a what-for simulation scenario that would allow us to

gain valuable insights into the environment dynamics (e.g., which of the student attributes

was the dominant factor in determining the CSCL outcome) of that CSCL setting. In future,

we also plan to incorporate the MHCF algorithm (Section 3.3) for coalition formation in

SimCoL to compare its performance against VALCAM and study how the student attributes

(e.g., social relationship) impact the performance of MHCF algorithm in the simulation

environment. Based on those simulation results, we will then be able to improve our design

of the MHCF algorithm further.
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MCFP-M: ClassroomWiki

This chapter is organized as follows. In Section 5.1, we describe the ClassroomWiki archi-

tecture with detail descriptions of its components. Section 5.2 outlines our implementation

of MHCF algorithm (Section 3.3) for student group formation in ClassroomWiki. Then

Section 5.3 describes our experiment setup and Section 5.4 presents our results. Finally,

Section 5.5 concludes and Section 5.6 presents our future work.

5.1 ClassroomWiki Architecture

ClassroomWiki is composed of four conceptual modules (Figure 5.1): (1) Wiki (WIM),

(2) Communication (COM), (3) Tracking and Modeling (TAM), and (4) Group Formation

(GFM). First, the WIM allows the teacher to create and assign Wiki assignments to the

students. For students, the WIM allows: (1) revision and (2) versioning of their Wiki as-

signment text. Second, COM facilitates student and teacher communications through: (1)

assignment-specific topic-based forums used by the teacher and the student groups and (2)

announcements and emails from the teacher to the individual students or student groups.

Third, TAM tracks students’ interactions with their group members and with the modules

of ClassroomWiki to build a detailed student model. That model is then used to: (1) better

assess students’ individual contributions towards their groups’ Wiki-related work leading
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to: (a) detection and prevention of free-riding behavior and (b), precise and specific inter-

ventions from the teacher to improve collaboration, and (2) better group formation. Finally,

the GFM allows the teacher to automatically form student groups randomly or by using the

tracked student models and the MHCF algorithm.

5.1.1 Wiki Module (WIM)

The WIM allows the teacher to create and assign a topic to the student groups in the course.

Once assigned by the teacher, the student groups collaborate to create a Wiki on that topic

which is evaluated by the teacher after the due date of the assignment. The WIM consists

of the assignment and the versioning component.

Figure 5.1: ClassroomWiki Architecture

The assignment component of WIM allows the Wiki teacher to create Wiki assignments

for the participating students. The Wiki assignment specifies the topic, the requirements

for the final submitted version (e.g., required sections, word limit, due date), and minimum
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size of the student groups. Once created by the teacher, the assignment component stores

this specification which can then be accessed by the students (while they are collaborating)

and by other modules (e.g., the group-size is used by the group formation module). The

versioning component tracks and stores all changes (e.g., addition, deletion) made to the

Wiki by all members of each student group. This tracking allows a student to view a color-

coded (e.g., different colors for additions, deletions, and unchanged text) history of changes

of the Wiki made by his or her group members.

5.1.2 Communication Module (COM)

ClassroomWiki’s Communication Module(COM) consists of two components: (1) a topic-

based forum and (2) an announcement system. The topic-based forum in the COM facili-

tates the collaboration process of the students in two ways. First, while collaborating, the

members of a student group can discuss their plan or approach of writing the Wiki, their

revisions, and other Wiki-related questions and comments in the forum. Second, the fo-

rum allows the teacher to respond to questions posed by the members of a student group

for their Wiki. The announcement system allows the teacher to notify the students about

changes or other assignment-specific matters. Furthermore, the forum component supports

the four forms of learning mentioned in Section 2.1 by allowing the students to discuss the

Wiki assignments with their group members using a topic-based forum. This COM allows

the students to discuss any ideas or concepts contained in the Wiki and thus assimilate and

accommodate new knowledge from the forum while they are collaborating. Further, while

the students exchange knowledge in the forum and resolve their cognitive conflicts through

discussions in the forum, the forum itself transforms (i.e., external assimilation and ac-

commodation in Section 2.1) due to those posted discussions. Note that the teacher is also

able to participate in a student group’s forum where that participation impacts the group’s

knowledge on the Wiki-topic and thereby enhances the assimilation and accommodation

process of that group’s members.
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5.1.3 Tracking and Modeling Module (TAM)

The goal of the Tracking and Modeling Module (TAM) in ClassroomWiki is to create and

maintain a model of every participating student. The student model in ClassroomWiki is

built using information regarding student activities that can be divided into the following

five categories:

• Active Use - the actions of a student that push information onto his or her group’s

Wiki and changes the content of that Wiki, e.g., the number of words (1) added, (2)

deleted, and (3) rearranged.

• Passive Use - student activities in ClassroomWiki that pull information from his or

her group’s Wiki and do not result in a change in the contents of that Wiki. For

example, the number of times a student views (1) the revision history of their group’s

Wiki, (2) the topics posted by other group members, and (3) the messages in his or

her posted topics.

• Interaction - a student’s interactions with his or her group members while collabo-

rating, e.g., the total number of topics created, the total number of replies posted, the

size of his or her messages in words, and the average number of other group members

who replied to a student’s posted topic.

• Survey Response - a student’s responses to the various surveys or questionnaires

posted by the teacher. These surveys can be designed to capture a student’s opin-

ion about the effectiveness of his or her group, peers, or the ClassroomWiki itself.

For example, a student may be asked to evaluate the contribution of another group

member toward their group’s Wiki.

• Evaluation - the evaluation scores received by a student for all Wiki-related activi-

ties, e.g., a teacher’s evaluation of a student for his or her contribution for the group
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Wiki Assuming S = {s1, . . . , sns} is the set of all students in ClassroomWiki, Sec-

tion 5.1.4 summarizes the information tracked by the Tracking and Modeling module

for a student si ∈ S in ClassroomWiki. The tracked information is used in Class-

roomWiki to build student models that: (1) are used by the Group Formation module

to realize the MHCF group formation mechanism and (2) allow the teacher to assess

the individual contribution levels of students facilitating specific and precise teacher

interventions. The details of the use of this stored information are provided in Sec-

tion 5.1.

5.1.4 Information tracked by Agent ai for Student si

1. Active Use

(a) Number of words added au1
i

(b) Number of words deleted au2
i

(c) Number of content-related phrases added au3
i

(d) Number of new content-related phrases added au4
i

(e) Min distance between the whole sentences added by si and the whole sentences

added by si’s group members au10
i

(f) Min distance between the whole sentences deleted by si and the whole sen-

tences added by si’s group members au11
i

(g) Number of forum messages posted by si to other members’ forum topics au7
i

(h) Number of group members’ editions the content related phrase added by si

survives au8
i

(i) Number of group members’ editions the whole sentences added by si survives

au9
i

(j) Number of forum topics created au5
i
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(k) Number of forum messages posted by other group members to si’s forum au6
i

2. Passive Use—Number of times logged in to the ClassroomWiki, length of each

ClassroomWiki session, number of times a student views:

(a) Wiki assignment specification pu1
i

(b) Details of other group members; e.g. email pu2
i

(c) Other group member’s revisions pu3
i

(d) Revision history i.e. list of all revisions and authors of a Wiki pu4
i

(e) Other group’s revisions if allowed by the teacher pu5
i

(f) Forum topics (a) posted by the student pu6
i i.e. to check the messages by other

group members, and (b) posted by other group members pu7
i

(g) Forum messages posted by other group members pu8
i

3. Interaction

(a) Number of topics created

(b) Number of messages posted for own topics ir1
i and other group member’s topics

ir2
i

(c) Length of the posted topics ir3
i and messages ir4

i in words

(d) Number of days the user changed (a) posted forum topics ir5
i or messages ir6

i ,

(b) posted Wiki revisions ir7
i

4. Survey Response

(a) Student’s evaluation of his or her Peers, i.e., peer-rating sr1
i

(b) Student’s evaluation of his or her group, i.e., team-rating sr2
i

(c) Student’s evaluation of ClassroomWiki, i.e., Wiki-rating sr3
i
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5. Evaluation

(a) Teacher’s evaluation of a student’s a. contributions toward his or her group’s

Wiki, i.e., Wiki evaluation ev1
i

(b) Average performance in other classroom activities or assignments ev2
i

5.1.5 Student Model in ClassroomWiki

Using the tracked information described in Section 5.1.4, ClassroomWiki builds a student

model hmi,t of a student si ∈ S at time t as:

hmi,t = 〈cni,t, coi,t, evi,t〉 (5.1)

where (1) cni,t ∈ R denotes the average amount of contribution of a student tracked

from his or her Wiki assignments, (2) coi,t ∈ R represents the collaborative effort of a

student calculated from the summary of that student’s collaborative or interactive activities,

and (3) evi,t ∈ R represents the average evaluation of a student based on the teacher-

assigned grades and peer evaluations.

Furthermore, we collapse the different groups of tracked information (Section 5.1.4) by

averaging:

âui,t =

11∑
k=1

waun · auki,t

∑
si∈g

11∑
k=1

waun · auki,t

(5.2)

p̂ui,t =

3∑
k=1

wpunk · puki,t

∑
si∈g

3∑
k=1

wpunk · puki,t

(5.3)
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îri,t =

7∑
k=1

wirk · auki,t

∑
si∈g

7∑
k=1

wirk · auki,t

(5.4)

ŝri,t =
sr1
k,t∑

si∈g

srki,t
(5.5)

êvi,t =

2∑
k=1

wevk · auki,t

∑
si∈g

2∑
k=1

wevk · auki,t

(5.6)

cni,t ∝ âui,t (5.7)

coi,t ∝ wirg · îri,t + wsr · ŝri,t (5.8)

evi,t ∝ êvi,t (5.9)

Here, waunk, wpunk, wir, wsr, wirk, wsrk, and wevk in Equation 5.2-5.9 are weights.

Notice that Equations 5.2-5.9: (1) capture the time-averaged performance (e.g., the relative

values of the active or passive use) of a student with respect to his or her group and (2) allow

the teacher to customize the model of a student to better capture his or her performance.

5.2 Implementation

We have used the open-source, Java-based Spring framework (www.springsource.org) to

implement ClassroomWiki as a Web-based system. This implementation allows the teach-

ers and students to participate in collaborative Wiki writing assignments from any com-
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puter that has an Internet connection and a Web browser. In our current implementation,

the ClassroomWiki modules (WIM, COM, TAM, and GFM) are programmed as plain

Java objects that reside in the Spring framework. Here, the Spring framework acts as

a container that (1) provides a repository (MySQL, dev.mysql.com) for the Class-

roomWiki modules to store and retrieve information described in Section 5.1.4 and (2)

stores the html pages those act as the GUI for the modules. The Spring framework (www.

springsource.org) and the ClassroomWiki modules are hosted on a Java Glass-

fish Application Server (glassfish.dev.java.net) which serves the online user-

requests (e.g., access requests from teachers, students) by providing them the html pages

generated by the ClassroomWiki modules in the Spring framework. The agents in Class-

roomWiki also use: (1) LingPipe (Natural Language Processing Tool, (alias-i.com/

lingpipe)) to calculate the values auki for k = 1, . . . , 9 in Section 5.1.4 and Netica-

J (www.norsys.com/netica-j) to create and maintain the Bayesian network (Fig-

ure 5.6). Furthermore, we have used Repast (repast.sourceforge.net), an agent-

based simulation framework to realize the agents for the MHCF group formation mecha-

nism in the group formation module. Deployment diagram in Figure 5.2 shows the imple-

mentation of ClassroomWiki modules. Furthermore, Figure 5.3 shows the typical sequence

of steps a student group and the teacher while they are interacting with ClassroomWiki to

revise an assignment.

5.2.1 Wiki Module (WIM)

The current implementation of Classroomwiki in Spring framework provides Web inter-

faces (html pages) for (a) the teacher to create and assign collaborative Wikis to the stu-

dents and (b) the students to view their assignment and collaboratively build a Wiki for

their group according to the teacher’s assignment specification. To facilitate the student’s

revision of a Wiki, we have embedded TinyMCE (tinymce.moxiecode.com) - a

JavaScript word processor into the ClassroomWiki website. The participating students in

file:dev.mysql.com
dev.mysql.com
file:dev.mysql.com
www.springsource.org
file:dev.mysql.com
www.springsource.org
file:dev.mysql.com
glassfish.dev.java.net
alias-i.com/lingpipe
alias-i.com/lingpipe
www.norsys.com/netica-j
file:repast.sourceforge.net
repast.sourceforge.net
file:tinymce.moxiecode.com
tinymce.moxiecode.com
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Figure 5.2: Deployment Diagram of ClassroomWiki

ClassroomWiki can use this TinyMCE’s Microsoft-word-like interface to write and revise

their group’s Wiki (see Figure 5.4)

To implement the versioning functionality, we have used an open-source Java library

called DaisyDiff (code.google.com/p/daisydiff) to identify the added, deleted,

and reorganized text by comparing the two versions of a given html file. For example,

for a given original html file, its modified version, and a configurable CSS (Cascading

Style Sheet) color code specification file (i.e., the colors of added, deleted, and unchanged

words), DaisyDiff can determine the differences between them and generate a diff html

file. This diff html file marks all changes (added, deleted, and unchanged words) according

to the colors specified in the CSS file making it easy for the students to visualize and

comprehend the changes made by their group members (see Figure 5.5). Furthermore,

while generating that diff file, DaisyDiff allows the TAM to track the words that were

code.google.com/p/daisydiff
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Figure 5.3: Interaction of Students and Teacher in ClassroomWiki

added, deleted, or left unchanged by a revising student.

5.2.2 Communication Module (COM)

The topic-based forum and the announcement system in the Communication module are

also implemented as html webpages using Spring in our current implementation of Class-

roomWiki. The webpage for the announcement system (Section 3.2) provides a form to

the teacher which allows him or her to write and submit announcements in html which is

displayed to all students when they log in to the ClassroomWiki website. In the topic-based

forum webpage, the forum messages are categorized according to their topics allowing the

students to easily search, read, and respond to the topics/messages for each collaborative

Wiki assignment.
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Figure 5.4: Editor Interface in ClassroomWiki

5.2.3 Tracking and Modeling Module (TAM)

The TAM is also implemented in Java to collect the student activity-related information

(i.e., active use, passive use, survey response, evaluation, and interaction in Section 5.1.4)

and store this collected information in a MySQL database for other ClassroomWiki mod-

ules to use. TAM collects the student-activity related information by using Spring frame-

work’s request-driven Model-View-Control (MVC) architecture. Spring’s MVC architec-

ture is designed around a central servlet called the dispatcher servlet that acts as a gate-

way that passes the user requests to the ClassroomWiki modules, collects the result of

the processing of the user request from the modules, and then generates the html pages

that displays the results to the requesting user. To track all user interactions in the Class-

roomWiki website, we have implemented the HandlerInterceptorAdapter, a Java Class writ-

ten in Spring, that intercepts all incoming user requests processed by the dispatcher servlet.

Each request contains (1) the time and name of the requested webpage and (2) all variables

associated with the requested webpage and the modules that process that user request. So,

using the HandlerInterceptorAdapter, the TAM is able to collect all user activity-related

information (tracked information as described in Section 5.1.4) in ClassroomWiki. This
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Figure 5.5: Versioning Interface in ClassroomWiki

collected information is then used by the module to build, store, and update the student

models in the MySQL database.

5.2.4 Group Formation Module (GFM)

ClassroomWiki’s Group Formation module allows the teacher to form student groups either

randomly or using the Multiagent Human Coalition Formation (MHCF) framework. Since

a detailed description of the MHCF algorithm is discussed in Section 3.3, here we only

provide a summary.

Given the model of a student, derived from the tracked information discussed in the

previous section, a student agent uses the model to first estimate probabilistically the con-

tribution of a student towards his or her group’s Wiki i.e., his or her performance as a

group member. Note that the MHCF algorithm assumes a probabilistic environment where

a student’s average performance (as an individual Equation 5.7 and as a group member

(Equation 5.8)) can be estimated but not accurately predicted. Then, based on this proba-

bilistic view of the environment, the agent, on behalf of its user, negotiates with others (1)

to collaborate to solve the current task well (improving the current-task reward or score) as

well as (2) to increase his or her knowledge learned from the collaboration to solve future
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tasks well (improving the future-task reward or score). This is where the tradeoff between

the current- and future-task rewards comes into play and the assumption that users learn to

improve their problem solving skills from collaborative activities. We further elaborate on

MHCF in the following paragraph:

Adopted MHCF Environment

In our adoption of the MHCF algorithm, its environment E is denoted as a 5-tuple

〈S,A,G, T,R〉. Here, S = {s1, . . . , sns} is the set of students, A = {a1, . . . , ans} is the

set of agents where each agent ai is assigned to a student si, G = {g1, . . . , gng} is the set of

student groups, T = {t1, . . . , tnt} is a set of tasks which the student groups collaborate to

solve, and rewardR is a 2-tuple 〈Rct, Rft〉whereRft andRft are two real-valued functions

that estimate the probability of a student’s current-task and future-task rewards when he or

she joins a coalition with,

Rct : f(smg,t, tj)→ R (5.10)

Rft : f(smg,t, tj)→ R (5.11)

smg,t = {smk,t|sk ∈ g} (5.12)

where smg,t is a set of the models of the members of the potential group g at time t

where that group g is being formed to solve the task tj ∈ T . Note that the functions Rct

andRft use the model of the members of a potential group to calculate the expected current-

task and future-task rewards (in terms of evaluations) for a student to if he or she joins that

potential group to solve a task. While the current-task reward allows an agent to estimate

what its student will receive after participating in a group, the future-task reward is what

the agent expects the student will gain in the future, due to their improvement in expertise
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or behavior through learning. This allows MHCF to look ahead while encouraging students

to perform sufficiently well in their current tasks.

Notice that the structure of the formed groups depend upon functions Rct and Rft that

help the student agents understand how the negotiated composition of a group of students

would (1) solve the chosen task and (2) collaborate to learn to solve future tasks better. In

MHCF, the student agents cooperatively build a Bayesian network Figure 5.6 that maps a

potential student groups’ model to their collaborative learning outcome, i.e., represents Rct

and Rft. In this Bayesian network,

cog,t = f(co|sk ∈ g)→ R (5.13)

cng,t = f(cnk,t|sk ∈ g)→ R (5.14)

evg,t = f(evk,t|sk ∈ g)→ R (5.15)

for a student group g = {sk|k = 1, 2, . . .}. The Bayesian network is built and main-

tained using the following steps:

Figure 5.6: Bayesian network Structure
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Learning for Group Formation

• Initialization—Initialization is done by (a) setting uniform priors - i.e., setting equal

current-task and future-task outcomes for all inputs, or (b) using previous perfor-

mance scores - allowing the teacher to choose previous test scores to initialize the

Bayesian network. For example, as will be discussed later when we discuss the

deployment results, the teacher can choose previous test scores that represent the

contribution, collaboration, and evaluation aspects of a student and use their average

performance scores in the classroom to set the current-task and future-task reward.

• Update—When the teacher assigns a grade to a group’s completed written assign-

ment, that grade becomes the current-task reward node value that group’s tracked

collaborative interactions (contribution, collaboration, and peer evaluations) are used

to calculate the contribution, collaboration, and evaluation nodes. Furthermore, the

evaluation scores are inserted as future-task reward node values for all previous as-

signment scores that had the same contribution, collaboration, and evaluation values.

Notice that each student agent is able to observe different student models and thus to-

gether divide the task (cf. division learning in (Weiss and Dillenbourg, 1998)) of observing

the entire set of possible model-output combinations. This learning strategy is designed to

allow the agents to learn the dynamics of the environment better.

5.3 Experiment Setup

To investigate the impact of MHCF algorithm and ClassroomWiki in formation and scaf-

folding student groups, we have deployed it in four university-level courses. Appendix C

and Appendix C show the internal review board-reviewed format and the student and the

parent consent forms that were used to get informed consent from the students and their

parents for our deployments. Furthermore, Table 5.1 summarizes the use of ClassroomWiki
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in three university-level courses and one community outreach activity. For our HIST 202

and CSCE 475 experiments, we adopted a control-treatment protocol. We divided the

students in each deployment into the control and treatment sets based on prior individual

student assessment scores-based on assignments assigned to the students prior to the Class-

roomWiki activities-such that the average score for each set of students was similar. Note

that all of our experiment setup was double-blind, i.e., neither the participating students nor

the teacher who graded the student groups’ Wikis and provided interventions knew which

students belonged to the control or the treatment set.

Table 5.1: Deployments of ClassroomWiki

Deployment Period Experiment
HIST 202 America af-
ter 1877

(1) 3 Weeks 03/09-
04/09 (2) 10/09-05/10

Asynchronous Collaborative
Writing

CSCE 475 Multiagent
Systems

3 Months 08/09-11/09 Asynchronous Collaborative
Writing

ENGL 180 Intro. to
Literature

1 Day 10/09 Synchronous Collaborative
Writing

GEM Project 10/09–05/10 Mentoring Collaborative
Writing

WMNS 101 Introduc-
tion to Women and
Gender Studies

10/09-05/10 Asynchronous Collaborative
Writing

5.3.1 HIST 202 Deployment

In the first deployment, 145 participating students were divided into control 72 and treat-

ment 73 sets by following the aforementioned process. The control set students were further

divided into 14 groups (5− 6 members) randomly while the treatment set students into 14

groups (5 − 6 members) using the MHCF algorithm. Also, the student models were ini-

tialized with previous tests and assignments (Equation 5.1). The students then collaborated

with their group members to prepare Wiki on “US as a super power” topic for three weeks.
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Then the teacher reviewed each group’s Wiki essay and scored each [0 − 100] and con-

verted each group’s Wiki grade to the student members’ individual grades by multiplying

that group’s grade with the relative contribution of that student; i.e., ev1
i for a student si ∈ S

member of group g is:

ev1
i ∝ gri ×

[ au1
i∑

si∈S

au1
i

+
au2

i∑
si∈S

au2
i

ir3
i∑

si∈S

ir3
i

+
ir4
i∑

si∈S

ir4
i

+
ir5
i∑

si∈S

ir5
i

+

ir6
i∑

si∈S

ir6
i

+
ir7
i∑

si∈S

ir7
i

]
(5.16)

where, gri is si’s group grade, auji for j = 1, 2 and irki for k = [3, 7] are the tracked

student activity (Section 5.1.4). At the request of the instructor, we are redeploying Class-

roomWiki in the Spring semester of 2010 and are expecting to gather more data on Class-

roomWiki.

5.3.2 CSCE 475 Deployment

In this deployment, the 17 participating students were divided into control (8) and treatment

(9) sets. For initializing the Bayesian network, the course pre-requisite test scores were

used. Then for each collaborative writing assignment, the control set students were further

divided into 2 groups randomly while the treatment set students were divided into 3 groups

using the MHCF algorithm. Each student then collaborated with his or her group members

on their Wiki assignment writing up on a particular Multiagent Systems topic. After the

due date, the teacher reviewed each group’s Wiki essay and scored each (0 − 100). Then

the teacher reviewed each group’s Wiki essay and scored each [0−100] and converted each

group’s Wiki grade to the student members’ individual grades by multiplying that group’s

grade with the relative contribution of that student; i.e., ev1
i for a student si ∈ S member of
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group g is:

sci ∝
12∑
k=1

 auki∑
si∈g

auki

 +

 au10
i + au11

i∑
si∈g

au10
i + au11

i

 (5.17)

ev1
i ∝ gri × [sci −median(SCg)] (5.18)

where, gri is si’s group grade, auji for j = 1, 2 and irki for k = [3, 7] are the tracked

student activity (Section 5.1.4), and SCg is the set of all student contribution values in si’s

group g.

5.3.3 ENGL 180 Deployment

In this deployment, we used ClassroomWiki to allow the students to collaborate in a syn-

chronous environment to: (1) build Wiki pages and (2) cross link their ideas and concepts

on the assigned topics as they built those pages. For the ENGL 180 classroom, the students

were assigned to write individual tropes on a variety of literary topics (e.g., Shakespeare

- Sonnet 130). As they were writing their individual tropes, they referenced each others’

work and cross linked the relevant literary ideas.

5.3.4 GEM Deployment

The Girl Empowerment and Mentoring (GEM) for Computing Project aims to inspire mid-

dle and high school girls towards computing in post-secondary education by (1) empow-

ering them with skills and interest for IT and (2) mentoring them to improve their self-

efficacy and motivation for a career in IT. To help the mentors involved in the GEM project

to closely monitor the performance and contribution of the participating students, Class-

roomWiki is being used for collaborative writing. The purpose of our GEM deployment

was to further test the software and usability of ClassroomWiki software.
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5.3.5 WMNS 101 Deployment

In this Women and Gender Studies course, we are using ClassroomWiki to investigate

the collaborative knowledge building process over time in an asynchronous collaborative

writing environment. In this classroom, the students work in groups to define a set of

terms specified by the instructor over a semester. As they learn the subject matter and

attend lectures from distinguished speakers, they are going to modify the definitions of

those terms over time. ClassroomWiki is here used by the instructor to (1) form groups

that encourage collaboration among their members and (2) track and model the members’

activities to gain insights into the collaborative knowledge building process in the groups

over time. However, over the semester, student dropouts, and inconsistent grading schedule

our collected data did not yield any meaningful observations.

5.4 Results

5.4.1 User Acceptance

We have conducted a Wiki-rating survey (Appendix A) among the students to estimate

students’ view of ClassroomWiki as a collaborative writing tool. Table 5.2 shows the stu-

dents’ evaluation of ClassroomWiki environments. The analysis of the students’ evalua-

tions reflects that, on average, the students found ClassroomWiki useful. Also, when asked

to compare, the students in the HIST 202 course rated ClassroomWiki to be better (av-

erage 3.4/5.0) than the Blackboard’s Wiki. The instructors who used ClassroomWiki in

HIST 202 and CSCE 475 also expressed their approval of ClassroomWiki as a useful tool

for implementing collaborative writing.
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Table 5.2: User Rating Scores of ClassroomWiki (Likert
Scale [1, 5])

HIST 202
Mean

HIST 202
StDev

ENGL 180
Mean

ENGL 180
StDev

CSCE 475
Mean

CSCE
475
StDev

23.4 5.4 23.9 6.65 24.0 4.7

Teacher’s Comments for HIST 202

I found ClassroomWiki’s automated group formation and reliable web-interface

to be useful for the students. The contribution tracking was able to provide ac-

curate student contribution information and the captured contribution reflected

the improvement effort of the students across all grade levels.

Teacher’s Comments for CSCE 475

Besides automatic formation of student groups, I liked the individual student

contribution assessment ability of ClassroomWiki. Using the detailed student

activity summaries for an assignment, I was able to accurately gauge a stu-

dents’ contribution to his or her group and confidently assign grades to the

students and proactively intervene in case of the non-contributing students.

5.4.2 Overall Student Performance and Collaboration

Analyzing All rows of Table 5.3, Table 5.4, and Table 5.5. To investigate ClassroomWiki’s

impact on the collaborative learning outcome of the students, we compare their scores in

the ClassroomWiki assignment (All students’ evaluation scores in Table 5.4) with other

similar essay assignments (Table 5.5) and observe that the mean and median student scores

in the three essay assignments do not show any clear trends/patterns. For example, there

were no clear indications that the treatment students were better students to begin with.

Furthermore, in the ClassroomWiki experiment, the students achieved lower mean and
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higher median scores than the other assignments except Blackboard’s Wiki assignment.

However, in Blackboard’s Wiki assignment, students’ scores were likely to be inflated since

Blackboard does not allow to the teacher to track individual student contributions (non-

contributing students). This comparison suggests that, although some students have always

achieved low scores in the tests (and thus produced low averages for the class), while

using ClassroomWiki, some of those low-performing students have performed better when

they collaborated with their group members. The improvement of those low-performing

students’ performances then raised the median score of the students in the ClassroomWiki

assignment. In our experiment: (1) ClassroomWiki’s collaborative tools (e.g., versioning

in WIM, assignment-specific forum in COM), (2) teacher’s periodic reminders, and (2)

enforced accountability of each student’s contribution due to our use of TAM could have

motivated the students to collaborate with each other to improve the quality of their group’s

final essay. That improved participation then led to the improved median score.

Table 5.3: Student Evaluations in ClassroomWiki

Set Min Median Mean Max StDev
Control 0.00 85.00 70.38 97.00 32.90
Treatment 0.00 83.00 74.84 95.00 24.69
All 0.00 83.00 72.62 97.00 29.05

Table 5.4: Standard Deviation of Group Members’ Evalua-
tion Scores

Set Min Median Mean Max
Control 0.00 34.00 27.40 41.64
Treatment 0.80 9.12 15.51 44.63

Table 5.5: Student Evaluations in Other Tests

Set SEG CRE CLK MID BLK
Control mn =

77.0 md =
72.1

mn =
70.3 md =
75.0

mn =
41.2 md =
50.0

mn =
76.3 md =
83.0

mn =
75.0 md =
85.0
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Set SEG CRE CLK MID BLK
Treatment mn =

75.5,md =
78.0

mn =
69.3,md =
77.0

mn =
38.2,md =
50.0

mn =
76.5,md =
77.0

mn =
79.2,md =
87.0

All mn =
73.8,md =
77.0

mn =
69.8,md =
76.0

mn =
39.7,md =
50.0

mn =
76.4,md =
77.0

mn =
77.1,md =
85.0

SEG - Segregation Essay 1/13/09, CRE - Civil Rights Essay 3/13/09, CLK - Clicker
4/30/09 MID - Midterm 2/27/09 , BLK - Blackboard Wiki 2/27/09

mn =Mean and md =median

5.4.3 Impact of MHCF Group Formation

Improvement in student scores and Collaborative Interactions One way to measure

how well the agents were able to model the students and form student groups is to com-

pare the performance and collaboration of control and treatment sets. Table 5.6 shows

that the treatment set students achieved better scores (higher mean and lower standard de-

viations) than did the control set students (statistically significantly for HIST 202 with

p < 0.05). Table 5.6 and Table 5.7, respectively, indicate that the treatment set students

collaborated more (in terms of revisions and forum discussions) than the control set stu-

dents in HIST 202 and CSCE 475 courses. The ability of the treatment set students’ ability

to better collaborate and learn could be attributed to MHCF’s ability to form better groups

using the Bayesian network. In HIST 202, the student agents in MHCF formed hetero-

geneous student groups and resulted in student groups that allowed them to write better

quality collaborative essays. In CSCE 475, the student agents were able to observe the stu-

dents’ interactions to iteratively learn how to form better student groups yielding improved

student performance and collaboration.
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Table 5.6: Individual and Group Evaluation Scores

Set HIST 202
Mean

HIST 202
StDev

CSCE 475
Mean

CSCE 475
StDev

Control 70.40 32.90 68.35 30.00
Treatment 74.80 24.70 88.21 13.90

Table 5.7: Average Revision Count per Wiki Assignment

Set HIST 202
Mean

HIST 202
StDev

CSCE 475
Mean

CSCE 475 StDev

Control 3.0 2.7 7.0 6.6
Treatment 3.8 3.2 9.1 4.0

Table 5.8: Average Forum Topic Count per Wiki Assignment

Set HIST 202
Mean

HIST 202
StDev

CSCE 475
Mean

CSCE 475 StDev

Control 2.1 1.4 4.8 2.5
Treatment 2.4 1.8 6.0 5.0

Table 5.9: Average Forum Message Count per Wiki Assign-
ment

Set HIST 202
Mean

HIST 202
StDev

CSCE 475
Mean

CSCE 475 StDev

Control 2.3 2.0 11.6 7.3
Treatment 2.4 1.9 17.5 11.8

5.4.4 Composition of Formed Student Groups

The comparison of the group composition - a key attribute in a collaborative learning setting

as discussed in (Roberts and McInnerney, 2007)-of the control and treatment set students

helps us explain how and why the treatment set students performed better in the course

deployments. First, in HIST 202 experiment, because the MHCF algorithm did not have

learning opportunity as there was only one session of group formation, we have boot-
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strapped the Bayesian network to form heterogeneous groups containing students of a vari-

ety of levels of competence, i.e., an introductory classroom, as recommended in (Cress and

Kimmerle, 2008). The analysis of our results shows that, the average standard deviation of

the treatment students’ total prior scores were higher (13.9 vs. 8.3 with p < 0.05) than the

control set students. This implies that our bootstrapping of the Bayesian network allowed

the MHCF agents to form treatment set student groups that had a higher level of hetero-

geneity than the control set. With everything else being roughly equal, this increased level

of heterogeneity is thus considered to be contributing to the increased collaboration and

improved performance of the students in HIST 202 (Table 5.6, Table 5.8, and Table 5.9).

Unlike HIST 202, in the CSCE 475 deployment, the Bayesian network did have 6

iterations of group formation sessions to learn the composition of the groups. The com-

parison of the standard deviation of the control and treatment set students’ (Figure ??)

evaluation scores shows that the randomly formed student groups were heterogeneous and

the MHCF-formed student set groups were homogeneous in nature. Furthermore, a t-test

confirms (p < 0.05) that the control set student groups had higher standard deviation on

average than the treatment set students. Homogeneous student groups have been suggested

by the collaborative learning researchers and practitioners (Johnson and Johnson, 1999) as

a strategy to form student groups especially for settings where students on average have

high expertise on the task they are collaborating to solve. Being an advanced course in

computer science, CSCE 475 consists of students most of whom possess the prior knowl-

edge and expertise to solve the task at hand. After the first round of group formation in

CSCE 475, the Bayesian network was updated with the students’ collaborations and eval-

uations encouraging a homogeneous composition of student groups. As a result, when the

randomly formed student groups were heterogeneous in terms of their effort, evaluation of

each other, and teacher’s evaluation, MHCF agents cooperatively learned to form homoge-

neous student groups. Over time, that homogeneous composition of student groups allowed

the treatment set students to collaborate and learn better than the control set students.
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The results here thus suggest that ClassroomWiki’s Bayesian network-enabled multiagent-

based group formation method improves the students’ performance by: (1) providing the

teacher the option to bootstrap the Bayesian network to form students groups with a chosen

composition (e.g., heterogeneous) and (2) learning the appropriate group composition (e.g.,

homogeneous groups for an advanced learner setting) for a given collaboration setting.

Figure 5.7: Average Standard Deviation of the Group Members’ Scores in Control and
Treatment Sets

5.4.5 Impact of Multiagent Tracking and Modeling

Accurate and Detailed Tracking of Student Activities

ClassroomWiki’s Tracking and Modeling module (TAM) allowed us to track all student

activities in the ClassroomWiki in details. Figure 5.8 and Figure 5.9 show the student

activity counts over the entire period of our experiment. This tracked information was

(1) used by the teacher at the end of the experiment to assess the individual contribution

of the students and detect free-riding, (2) periodically checked by the teacher during the

experiment to provide specific and precise guidance to the student groups to improve their
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collaboration, and (3) analyzed to discover hidden trends and patterns (Section 5.4.5) in

student behavior that could be utilized to improve the design of the collaborative writing

assignment or environment (i.e., ClassroomWiki).

Figure 5.8: Tracked Student Activity Summary I

Identifying, Penalizing, and Alleviating Free-Riding

Although it is difficult to accurately verify in our experiment setup, there are positive indi-

cations that the student assessment done with the data collected by the TAM was able to

accurately capture the level of individual contributions in our deployments. In HIST 202

Deployment, there were 13 students who did not revise their group’s Wiki or post any fo-
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Figure 5.9: Tracked Student Activity Summary II

rum topics or messages). As a result, their individual student scores were 0. In CSCE 475

Deployment, there were also four cases of free-riding students. Though technically still

contributing, these students posted trivial or next-to-meaningless contributions to the wiki

or merely added or subtracted a few sentences moments before the due date. These types

of student contributions resulted in: (1) yielded low contribution scores (for the students

who added them at the last minute) due to our use of the number of group members’ edi-

tions a particular edition survives (i.e., au8
i and au9

i in Equation 5.16, Equation 5.17) and

(2) annoyed the other group members who could not review those last-minute editions.

The instructor of the course in CSCE 475 deployment received timely reports from Class-

roomWiki and was able to penalize and then e-mail or meet with the free-riding students to

discuss their actions. As a result of these meetings, the 4 different non-contributing students

in CSCE 475 did not repeat their free-riding behavior in future topic summary experiments.

Therefore, these results suggests that the data collected by Researchers (Ebner et al., 2008)
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mention that the main problem regarding free-riding is two-fold: first, often collaborative

learning tools do not allow the teacher to accurately capture student’s contributions toward

his or her group. Second, if the students perceive that their group members are not held

accountable for free-riding, they feel aversion toward collaborative work. So, the teacher’s

ability to identify and penalize free-riding students in the ClassroomWiki deployments sug-

gests that the micro-level detailed tracking and modeling was able to alleviate these issues

associated with free-riding.

Improved Assessment of Student Performance

Table 5.10 and Table 5.11 below show the correlations between the students’ scores in the

Wiki assignments (ClassroomWiki and Blackboard’s Wiki) and their scores in the other

tests/assignments in HIST 202 and CSCE 475 deployments. Using these correlation val-

ues, we were able to conduct a baseline comparison of ClassroomWiki’s performance with

respect to a Wiki that does not provide any tracking/modeling of student activities for in-

dividual assessment. This Wiki system provided by Blackboard had an interface and func-

tionality similar to ClassroomWiki’s but did not provide any tracking/modeling of students’

interactions for assessing their contributions toward their groups. Table 5.10 and Table 5.11

indicate that the correlation between the students’ exam scores in the class and their scores

in Wiki were higher for ClassroomWiki than Blackboard Wiki’s. Since these exam scores

represent the knowledge and understanding of the students that they gained in the class,

the higher correlation suggest that the detailed micro-level tracking and modeling of stu-

dent behavior in ClassroomWiki allowed it to capture the performance of the students more

accurately than Blackboard’s Wiki.
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Table 5.10: Correlation between the Student Scores in Class-
roomWiki and Other Tests for HIST 202

Test/Assignment ClassroomWiki Blackboard
Wiki

Final 05/01/09 0.69 0.54
Midterm Essay Exam 03/02/09 0.52 0.67
Civil Rights Essay 03/13/09 0.51 0.39
Origins of Segregation Document
Analysis 1/13/09

0.30 0.18

Table 5.11: Correlation between the Student Scores in Class-
roomWiki and Other Tests for CSCE 475

Test/Assignment ClassroomWiki Blackboard
Wiki

Final 12/01/09 0.64 N/A

Furthermore, Table 5.11 shows that in CSCE 475 deployment, the students’ evaluations

for the topic summary scores were highly (> 0.6) correlated with their final exam evalua-

tions. The values in Table 5.10 indicate that, except the first document analysis assignment,

the scores the students received in the ClassroomWiki assignments were well correlated

with their scores in the other assignments/exams. These moderately high correlation val-

ues suggest that individual student scores that were calculated based on ClassroomWiki’s

student contribution summary (e.g., number of words added/deleted, number of forum mes-

sages posted, etc.) closely represented the actual performance of the students in the other

tests and assignments in the class.

Hidden Patterns of Student Behavior

After the ClassroomWiki experiment was over, we have analyzed the ClassroomWiki data

for hidden trends and patterns in student behavior which could help us improve the design

of the collaborative writing assignment and the environment. We have found an interest-

ing periodicity pattern in student activities. When we counted the student activities in the
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ClassroomWiki over the entire course of the assignment, we saw that the students’ interac-

tion count rose and fell with a period of seven days. Figure 5.10 shows the student activity

count over the three-week period in the HIST 202 deployment and that the ClassroomWiki

students worked less on Fridays and more near the middle of the week (i.e., Tuesdays and

Thursdays). Furthermore, the students’ activity count increased every week for the three

weeks of the assignment to rise from 1000 during the first week to ≥ 6000 on the third

week. Since we assume that the knowledge gain results from the students’ participation

in the collaborative activities (i.e., Wiki revisions, posting messages, topics), one way we

could improve the collaborative learning outcome of the students is by changing the design

of the assignment so that the students are more motivated to collaborate early rather than

near the due date. One way the impact of due date could be utilized to motivate the stu-

dents is by dividing the Wiki assignment into segments and assigning separate intermediate

due dates for those segments. For example, the “US as a super power” assignment used

in ClassroomWiki’s experiment could be divided into three stages (topic choice, evidence

gathering, and final Wiki) where the stages have three different due dates, the Wiki sections

submitted at each stage are graded separately for each student group.This result suggests

the potential of ClassroomWiki’s multiagent tracking and modeling for providing valuable

insights into the collaborative activities of the students.

Identifying Students’ Trend of Improvement

We have also categorized the students according to the change in their scores from the

midterm to the final exam. Table 5.12 shows that the students whose performances (i.e.,

their scores) improved from the midterm to the final (second row of Table 5.12) had achieved

higher mean (difference statistically significant p < 0.05) and higher median scores in the

ClassroomWiki assignment than the students whose performances (1) did not change or

(2) deteriorated. This demonstrates that our micro-level detailed tracking and modeling in

ClassroomWiki may identify the students who are trying harder and improving their per-
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Figure 5.10: Weekly Student Activity Pattern in HIST 202

formance in the classroom and suggests our micro-level model’s potential as a metric for

capturing the students’ learning progress.

Table 5.12: Student Scores in ClassroomWiki HIST 202 De-
ployment

Category Median Mean
Students with No change in the
scores (Final→Midterm)

69.0 50.0

Students with Positive Change (Fi-
nal→Midterm)

85.0 81.16

Students with Negative Change (Fi-
nal→Midterm)

78.50 65.77
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5.5 Conclusions

We have presented ClassroomWiki, designed based on the educational research on mod-

eling the collaborative learning process, to improve typical Wiki’s functionalities in two

aspects: (1) individual student contributions and (2) group formation. We have also dis-

cussed how the MHCF algorithm was realized in the ClassroomWiki environment to solve

the MCFP-M problem in the asynchronous collaborative writing setting. We have reported

on our experiments regarding collaborative Wiki assignment in a university-level history

course. Although not all results were statistically significant, our analysis suggests that

ClassroomWiki and MHCF may (1) improve the collaborative learning outcome of the

students by its group formation framework, (2) help the teacher identify and penalize free-

riding students, and (3) facilitate specific and precise teacher interventions based on the

tracked student activities.

5.6 Future Work

The future work regarding our implementation of iHUCOFS framework and the MHCF

algorithm in ClassroomWiki involves the following. First, we plan to enrich the scaffolding

capability of the mediator or student agents by adding an implicit scaffolding machine.

Providing of implicit scaffolding to the students using agents is a well-researched area

in Intelligent Tutoring systems. We plan to incorporate the existing intelligent tutoring

systems research (Jung and VanLehn, 2010; Arroyo et al., 2010) in the mediator agents’

reasoning so that they are able to explicitly scaffold the human users. Furthermore, to

improve the agent learning capability in the MHCF algorithm, we plan to study the impact

of choosing different Bayesian network structures on the mediator agents’ ability to form

better groups. Finally, we plan to deploy ClassroomWiki to larger classrooms in future

to collect more data and better validate the performance of MHCF algorithm in terms of

forming and scaffolding student groups.
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MCFP-A: ADLIT Framework

Here in Section 6.1, we describe the environment of the ADLIT framework. Then in Sec-

tion 6.2, we describe a coalition formation protocol that is used by the ADLIT agents while

forming coalitions. In Section 6.3, we describe the MCT, OSL, and LEA approximation

strategies that are used by the agents to evaluate the coalition proposals in terms of current-

task vs. future-task reward tradeoff for coalition formation. Section 6.4 describes how

we implement the ADLIT framework in an agent-based simulation environment and a pre-

viously published coalition formation problem scenario. We then report our experimental

setup in Section 6.5 and assess the performance of our ADLIT framework in Section 6.6.Fi-

nally, we conclude in Section 6.7 and discuss our future work in Section 6.8.

6.1 ADLIT Framework

In this section, we first present a set of assumptions that define the agents, the tasks the

agents solve, and the learning actions that the agents use to change their types. Based on

these assumptions, we describe ADLIT’s environment, the coalitions, and the dynamics of

the environment (i.e., what determines the solution quality of the tasks and the type changes

in the coalition members). We then define the current task vs. future task tradeoff in the

ADLIT environment and formally define the coalition formation problem.
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6.1.1 Assumptions

Assumption 1 (Task)

There is a set of tasks in the environment that needs to be solved. Each task contains a set

of subtasks and some divisible reward that is available upon solving it.

Assumption 2 (Agents and Coalitions)

There is a set of agents in the ADLIT framework’s environment. Although not every agent

is required to do so, these agents can form or join disjoint coalitions to solve the tasks in the

environment and earn rewards. The reward earned by each coalition is distributed among

its members according to some distribution scheme agreed upon by the members while

forming the coalition.

Assumption 3 (Agent Type)

Each agent in the environment has a type that is composed of a set of capability-expertise

pairs. The capability specifies the nature of the subtask that agent is able to solve and the

expertise value denotes how well that agent is able to solve that particular subtask.

Assumption 4 (Task Solution Quality and Associated Uncertainty)

There is a probabilistic mapping between the types of the coalition members and the solu-

tion quality they can achieve. Here, the probabilistic nature of the mapping is due to the

uncertainty in the environment. Furthermore, the agents are not aware of this mapping and

must learn to estimate this mapping by observing the outcome of a coalition (in terms of

task solution quality) when they solve a task.



www.manaraa.com

113

Assumption 5 (Type Change through Implicit and Explicit Learning)

The agents in ADLIT are able to change their types only by learning from their experience

in a coalition. Here, the change in the type of an agent means: (1) that agent learning a

new capability or (2) the positive or negative changes in that agent’s expertise values of its

capabilities. Furthermore, the change in the type of an agent may result from implicit and

explicit learning where these two types of learning are defined as:

• Implicit Learning: While working in a coalition, an agent could act as a learner

and observe the other coalition members’ actions in the coalition (e.g., learning by

observation (Inaba et al., 2000)) to learn to solve a task better without requiring any

interactions from those coalition members, we call this implicit learning.

• Explicit Learning: An agent may also act as a teacher agent and provide explicit

guidance to a learner agent (i.e., a member of its own coalition) so that the chosen

learner agent can improve its type by learning from that guidance to solve future

tasks better. An example of explicit learning is Learning by Being Taught (Inaba

et al., 2000) where the teacher agent provides explicit guidance to a learner agent to

teach it how to solve some subtask better.

Assumption 6 (Type Change and Associated Uncertainty)

Due to the uncertainty in the environment, the mapping from the (1) the types of a coali-

tion’s members, (2) the task which they are solving, and (3) the specific implicit or explicit

learning action being used, to the change in the coalition members’ types that occur is

probabilistic.

Assumption 7 (Cost of Implicit and Explicit Learning)

There is a cost associated with the implicit and explicit learning actions. In the explicit

learning scenario between a learner agent and a teacher agent, the learner agent incurs the



www.manaraa.com

114

learning cost and the teacher agent incurs the teaching cost. Furthermore, if the learner

agent is implicitly learning from a coalition member without that coalition member provid-

ing any explicit guidance, the learner agent pays the learning cost.

Assumption 8 (Effectiveness of Learning Actions and Emergent Global Performance

Improvement)

We assume that there is an order of effectiveness (in terms of improving the types of the

agents) of the implicit and explicit learning interactions performed by the agents. Our

assumption is driven by the learning theory research (Hoppe et al., 2003) that describe the

variances among the impact of different learning actions (learning by being taught, learning

by apprenticeship) and the relative difference in the teacher’s and learner’s expertise in

improving the learner’s expertise (i.e., type in our case).

Notice that there is an implicit connection between the types (i.e., expertise) of the

teacher and the learners in the ADLIT environment that may potentially impact the perfor-

mance of all agents in the systems. For example, if the teacher agent has high expertise

compared to the learner, it may help the learner agents to earn higher expertise from their

chosen implicit and explicit learning actions (Hoppe et al., 2003). So a resultant type

change that yields a high expertise value for an agent may potentially impact a large num-

ber of future coalition members. That is, the improvement in the type of an individual (i.e.,

the learner agent) helps the system improve the types of other agents (i.e., the potential

future learners) when that individual opts to become a teacher agent in the future, resulting

in the improvement in overall system performance. This “emergent” impact of individual

local decision (i.e., an agent’s decision to improve its own type or the types of its coalition

members) on the global performance (i.e., the overall performance of all agents working in

the coalitions in the ADLIT environment) is one of the key aspects of our research in this

domain.
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Assumption 9 (Current and Future Task Reward)

The rewards achievable by an agent in a coalition can be divided into two generic cate-

gories: (1) current-task rewards and (2) future-task rewards. An agent’s current-task re-

ward is composed of its share in the reward its coalition has earned by solving a task. This

current task reward can be exactly calculated by an agent when a coalition completes the

assigned task. The future-task reward is the change (positive or negative) in the rewards of

the future tasks that is expected to be available due to the change in an agent’s own type

and the types of its coalition members as a result of implicit and explicit learning.

Assumption 10 (Reward Distribution)

Since we assume that the solution quality of the task of a coalition primarily depends upon

the types of its members, we assume that after a coalition receives a reward after completing

a task, that reward is distributed to the members according to a distribution scheme in which

the agents that have better types receive higher reward.

Assumption 11 (Agent Type Revelation)

Since the reward distribution scheme distributes the coalitional reward based on its mem-

bers’ types (Assumption 10), we assume that, while negotiating to form a coalition, the

negotiating agents know each other’s types.

Assumption 12 (Time)

There is a notion of discrete time in the ADLIT environment. All events (agents forming

coalitions, agents earning rewards, etc.) occur at discrete time quanta.

Assumption 13 (Task Openness)

The set of tasks in the environment changes over time, i.e., new tasks are added to this set

and existing tasks are removed from this set. Exactly when and which task is added to or



www.manaraa.com

116

removed from the set of tasks is unknown to the agents.

Assumption 14 (Agent Openness)

The set of agents in the environment changes over time, i.e., new agents are added and

existing agents are removed from the environment. Exactly when and which agent is added

to or removed is unknown to the agents.

Assumption 15 (Partial Observability)

The environment is partially observable. In particular, each agent is only able to observe

its own type change. Further, each agent has only access to information such as coalition

rewards for its own coalitions. For example, an agent A who has observed another agent

B receiving rewards when working with B will not be able to observe how many other

rewards that B has received from coalitions of which A is not a member.

6.1.2 Environment

The environment of the ADLIT framework is defined as:

E = 〈T ,Θ,N , I,O,K, ν, ρ, ψ, ζ, ϕ, µ〉 (6.1)

In Equation 6.1:

• T = {T1, . . . , T|T |} is a set of tasks. Here, a task is defined as Tk = 〈Sk, Rmax,k〉

where Sk is a set of subtasks, Rmax,k ∈ Z is the maximum and divisible reward for

solving task Tk.

• Θ = {θ|θ = 〈α, β〉, α ∈ A, β ∈ B} is a set of all possible agent types in E where

θ’s are the possible types of the agents N defined by capabilities A and expertise

B. Here, A, B contains nominal values. For example, if the environment contains

software engineering tasks, A could contain {coding, interface design} and B
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could be {Good, Bad}. Notice that there is a one-to-one correspondence between

the capabilities and the subtasks that are in the tasks T .

• N = {i = 1, . . . , |N |} is a set of agents where agent i has type θi.

• I = {icli,j, scli,j|l = 1, 2, . . . , n|I|, i, j ∈ NC} is a set of implicit learning- and

explicit-learning- related actions where,

– icli,j ∈ I is the implicit learning action of agent i to learn (by observation) from

coalition member j for a subtask sl ∈ T .

– scli,j = 〈scli, sclj〉 ∈ I is the explicit learning action between agent i and agent j

for a subtask sl ∈ T . Here, agent i is the teacher agent and agent j is the learner

agent. The teacher agent’s action here is scli and the learning agent’s action here

is sclj .

O = {〈κ, θC〉|κC ∈ K} is the set of possible outcomes when any coalition C solves

task TC ∈ T where,

– κC ∈ K is the quality of the solution of task TC .

– θC = {θ1, . . . θ|NC |} is the vector of resulting or updated type of the members

NC in coalition C.

• ν : Pr(κ|θC , TC) is the task solution quality dynamics which probabilistically deter-

mines the task solution quality of a task TC solved by members of coalition C who

have the type θC .

• ρ : κk → Rk∀ Tk ∈ T is the reward function which is known to the agents.

• ψ : Pr(θ′
C |θC , icC , scC) is the type change dynamics which probabilistically deter-

mines the new types of the members of a coalition C for: (1) given types of coalition

members θC , (2) the coalition members’ implicit learning actions (icC), and (3) ex-

plicit learning actions (scC). This function is unknown to the agents.
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• ζ : {ic, 〈scli, sclj〉 ∈ I} → Z is the learning cost function which is known to the

agents.

• ϕ : Pr(TC |t) denotes the task openness, i.e., the probability of encountering a task T

at a time t. This probability is unknown to the agents.

• µ : Pr(θs|t) denotes the agent openness, i.e., the probability of encountering a set of

agents S of types θs at a time twhile forming coalitions. This probability is unknown

to the agents.

6.1.3 Coalition

A coalition C is defined as:

C = 〈NC , θC , TC , dC , icC , scC〉 (6.2)

where in Equation 6.2

• NC ⊆ N

• θC = {θi| ∀i NC}

• icC = {icli,j| l = 1, 2, . . . , n|I|, i, j ∈ NC} is the set of implicit learning actions of all

coalition members

• scC = {scli,j| l = 1, 2, . . . , n|I|, i, j ∈ NC} is the set of explicit learning actions of

all coalition members

6.1.4 Individual Reward and Utility

Say several agents form a coalitionC with a reward demand vector dC = 〈d1, . . . , dN|C|〉, di ∈

Z. Then, the relative demand of an agent i is ri(θC) =
di∑
i di

.
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So, if C receives achieves a task solution quality κ, an agent i ∈ NC receives an

individual reward:

Ri(κ, θC) = ri(θC) · ρ(κ) (6.3)

In Equation 6.3, ρ is the reward function known by all agents 6.1. Furthermore, if agent

i has engaged in implicit and explicit learning actions ici,C = {icli,j, l = 1, 2, . . . , n|I| , j ∈

NC−{i}} and sci,C = {scli,j, l = 1, 2, . . . , n|I| , j ∈ NC−{i}} with its coalition members

and incurred the learning cost ζ(ici,C , sci,C), its earned utility for joining a coalition is

Ui(κ, θC , ici,C , sci,C) = Ri(κ, θC)− ζ(ici,C , sci,C) (6.4)

As discussed in Section 6.1, the coalition members’ types determine the solution quality

for a task and, in turn, that solution quality determines the coalition’s reward. Due to the

impact of a coalition member’s type on its coalition’s reward, we assume that an agent’s

reward demand is proportional to its contribution to the quality of that solution. In other

words, for an agent i ∈ C, its reward demand is:

di ∝
∑
βi∈θi

βi
βi,max

(6.5)

where βi,max is the maximum expertise possible for the chosen task TC’s subtasks, and

βi is the expertise of i for TC’s subtasks. So, an agent is able to demand the most reward or

reward share when it is an expert on the subtasks included in their chosen task. Notice that

this reward distribution scheme is similar to the impact of an agent’s action on its individual

reward in the ACE strategy (Weiss, 1993).
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6.1.5 Reward Tradeoff

The current-task vs. future-task reward tradeoff encountered by an agent i while forming a

coalition C (Equation 6.2) at time t is denoted by the following tradeoff:

TradeoffC,t =
∑
κ

[Pr(κ|θC , TC) ·Ri(κ, θC)]− [ζ(ici,C , sci,C)]

+
∑
∆t

γ∆t
∑
Tf∈T

Pr(TC,∆t)

·
∑
θcf∈Θ

Pr(θCf |ici,C , sci,C , Tf , θC) · Pr(θCf,∆t)

·
∑
κ∈K

∆R(Tf,∆t, κ, θC) (6.6)

where in Equation 6.6 ∆R(Tf,∆t, κ, θC) denotes the improvements in the rewards of i

for solving the task TC at the future time t+ ∆t and,

∆R(Tf,∆t, κ, θC) = Pr(κ|θCf ) ·Ri(κ, θCf )− Pr(κ|θC , TC)Ri(κ, θC) (6.7)

6.1.6 ADLIT Coalition Formation Problem

From the microscopic perspective of coalition formation (Vassileva et al., 2002), we for-

mally define the ADLIT coalition formation problem as:

The ADLIT coalition formation problem for an agent i ∈ E refers to the joining or

forming coalitions and choosing implicit and explicit learning actions for those coalitions

while solving tasks in T so that its current task vs. future task reward tradeoffs incurred

during coalition formations allow it to (1) optimally improve its types and (2) maximize its

rewards with respect to the improved types θi over time.
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6.2 Coalition Formation Protocol

Here we propose a protocol that allows the agents in the ADLIT framework to communicate

with the other agents in the environment to form or join coalitions and select its implicit

and explicit learning actions.

The coalition formation protocol in ADLIT is composed of multiple stages where at

any stage of coalition formation, there exists a set of coalitions CS in E. Notice that, in

those coalitions, it is possible that there are agents who are in singleton coalitions since

they have not been able to form coalitions. For those singleton coalitions, demand vectors

and the implicit and explicit learning actions would be null. With this described setup, the

coalition formation protocol allows the agents to form coalitions in the following way. Dur-

ing a coalition formation stage, an agent is selected at random as a proposer where each

agent has an equal probability of being selected and this coalition formation is repeated

n times (n is a multiple of N ) allowing each agent to act as a proposer equal number of

times. Algorithm 6.1 shows the details of the protocol followed by a proposer agent while

forming coalitions. During the initialization step (Steps 2-6 in Algorithm 6.1), the proposer

agent selects its neighborhood and then communicates with those neighbors (Step 7 in Al-

gorithm 6.1) to learn their types. When the responding agents provide their types to the

proposer agent (Step 2 in Algorithm 6.2), in Step 9 (Algorithm 6.1), that proposer agent

prepares a coalition formation proposition σ = C from its list of neighboring agents. In

this step, the proposer chooses the members of the coalition and the implicit and explicit

learning actions for those members of the coalition in such a way that the expected value

of that coalition is maximum from its own perspective. In Steps 11-12 (Algorithm 6.1),

the proposer agent communicates with each of the potential coalition members (Step 9 in

Algorithm 6.1) to get their choice of explicit learning actions for the proposed coalition.

Then in Step 15 (Algorithm 6.1), the proposer agent announces the preliminary choice of

implicit and explicit learning actions of the proposed coalition members to all members.

In Steps 12-14 (Algorithm 6.2), the responding coalition members finalize their explicit
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learning actions. Notice that this announcement in Step 15 (Algorithm 6.1) enables a po-

tential coalition member to coordinate their learning actions according to the implicit and

explicit learning actions of its other coalition members. That means, a coalition member

can choose to participate and learn from a teacher agent (i.e., an agent willing to teach) or

choose to ignore that explicit learning offer and select some other implicit learning action.

Finally, in Step 22 (Algorithm 6.1) if the value of the proposed coalition is higher than

its current coalition, the proposer agent communicates with all responding agents with the

final coalition formation proposal to check whether they agree to join the proposed coali-

tion or not. If all responding agents agree (Step 18 Algorithm 6.2), the proposer (Step 24

Algorithm 6.1) forms the coalition. Once the coalition is formed, the proposer (Step 24

Algorithm 6.1) and the responder (Step 18 Algorithm 6.2) notify their respective previous

coalitions that they are leaving the coalition.
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Algorithm 6.1 Coalition Formation Protocol for the Proposer Agent ip ∈ Cp.
1: Initialization:
2: if |Nne| = 0 then
3: Randomly select |Nne| ∈ N agents to build neighborhood
4: else
5: Replace agents who declined to join coalition in the last round with randomly se-

lected agents
6: end if
7: Get types θne from Nne agents
8: Proposal Preparation:
9: Prepare proposal σ = C that has the maximum value from neighborhood agents Nne

10: Implicit and Explicit Learning Action Selection:
11: for all Potential Coalition Members j ∈ σ do
12: Receive potential implicit, explicit learning actions: scC ← scC ∪ scj,C , icC ←

icC ∪ icj,C
13: end for
14: for all Potential Coalition Members j ∈ σ do
15: Announce icC , scC
16: end for
17: Explicit Learning Action Finalization:
18: for all For potentials coalition members j ∈ C do
19: Receive explicit learning actions: scC ← scC ∪ scj,C
20: end for
21: Coalition Formation:
22: if Value of coalition Cp < value of Coalition C then
23: if If all members of the coalition C agree then
24: Form Coalition C
25: Notify members of coalition Cp about leaving coalition
26: end if
27: end if
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Algorithm 6.2 Coalition Formation Protocol for the Responder agent j ∈ Cj in response
to ip’s proposal.

1: Initialization:
2: When requested, send type θj to proposer ip
3: Receive coalition formation proposal σ = C from proposer agent ip
4: Implicit and Explicit Learning Action Selection:
5: for all Potential Coalition Members i ∈ σ do
6: Select implicit and explicit learning actions: scC ← scC ∪ scj,i, icC ← icC ∪ icj,i
7: end for
8: for all Potential Coalition Members j ∈ σ do
9: Announce icC , scC

10: end for
11: Explicit Learning Action Revision:
12: icC ← implicit learning actions of the members of C, scC ← explicit learning actions

of the members of C (sent by ip)
13: Choose explicit learning actions for members: scj,C = {scj,i|i ∈ C − j} s.t. the

expected value of coalition C ∈ σ is maximum
14: Send modified coalition formation proposal σ′ to ip
15: Coalition Joining:
16: σ ← finalized proposal from proposer ip
17: if Value of coalition C > value of coalition Cj then
18: Join coalition C ∈ σ
19: Notify members of coalition Cj about leaving coalition
20: end if

Whether an agent agrees to join a coalition proposed by a proposer agent depends on

its evaluation of that coalition formation proposal (in Algorithm 6.1 and Algorithm 6.2).

The value of a proposition σ for forming coalition C = 〈NC , θC , TC , dC , icC , scC〉 from

the perspective of an agent i is defined by the current-task vs. future-task reward tradeoff

(re-writing Equation 6.6):

Qi(C,Bi) =
∑
κ

[Pr(κ|θC , TC) ·Ri(κ, θC)]− [ζ(ici,C , sci,C)]

+ γVi (6.8)
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Vi(Bi) =
∑
Tf∈T

Pr(TC,∆t) ·
∑
θcf∈Θ

Pr(θCf |ici,C , sci,C , Tf , θC) · Pr(θCf,∆t)

·
∑
κ∈K

∆R(Tf,∆t, κ, θC) (6.9)

Comparing Equations 6.6, 6.8, 6.9, we see that the first term in Equation 6.8, is the

current task reward in Equation 6.6. Furthermore, the second term in Equation 6.9, i.e.,

Vi(Bi), is defined as the expected future task reward increase in the current task future task

reward tradeoff in Equation 6.6 measured from the perspective of agent i.

6.3 Computational Approximations

It is quite impractical for the agents in the ADLIT’s environment to evaluate the coalition

formation proposals by solving the POMDP described by Equation 6.8 and 6.9, for a vari-

ety of reasons. First, the outcomes (in terms of current-task vs. future-task reward tradeoff)

of the agents’ decisions (choice of coalition and learning actions) are uncertain due to the

change in the agent types (Assumption 8 in Section 6.1.1). So, spending resources for

finding the maximum expected reward yielding solution (i.e., by solving the POMDP) may

prove to be inefficient for an agent in terms of its reward-to-effort ratio. In addition, due

to the partial observability (Assumption 12 in Section 6.1.1) and the openness (Assump-

tion 13 and 14 in Section 6.1.1), an agent cannot accurately predict when (1) the task for

which it is training (by implicit or explicit learning actions) and (2) the coalition mem-

bers it is teaching will be available. Furthermore, the agents in the environment have their

own beliefs and are not constrained by any central coordination mechanism. The differing

beliefs mean that the agents are likely to have differing evaluations (especially the new-

comer agents that are introduced due to agent openness) of the same coalition formation

proposal. This difference in the evaluations makes it impossible for the ADLIT agents to
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predict whether a coalition formation proposal will be accepted by the potential members

(even if that proposal is the best according to its belief). As a result, there is no guarantee

that an agent can accurately evaluate how its decisions at present (e.g., choice of coalition

members and learning actions) will impact its rewards in the future by solving the POMDP

in Equation 6.8 and 6.9. To summarize, the impact of the openness, the uncertainty, and

the partial observability in the environment on (1) an agent’s ability to form or join a coali-

tion and (2) a coalition’s ability to achieve a particular task solution quality indicate that

spending resources for solving the POMDP will not be efficient. So, our ADLIT agents use

approximation strategies instead of solving Equation 12, to ballpark the value of a coalition

while forming or joining coalitions. These approximation strategies will allow the ADLIT

agents to calculate their reward tradeoffs sufficiently accurately and with minimal compu-

tation to optimize their type changes and maximize their rewards with respect to their types

over time.

We provide three strategies for the agents to approximate the value of a proposed coali-

tion during coalition formation protocol (Algorithm 6.1 and 6.2). First, in the Myopic Cur-

rent Task (MCT) Strategy (Chalkiadakis and Boutilier, 2008), the agents choose the coali-

tion that provides the maximal current-task reward without taking advantage of the type-

changing impact of the implicit and explicit learning actions. In the One-Step Lookahead

(OSL) strategy (Emery-Montemerlo et al., 2004), the agents look ahead into the immedi-

ate round of coalition formation to approximate the reward gain in the future. Finally, in

the Learning by Exploration (LEA) strategy, the agents utilize the exploration-exploitation

issue to interact with its environment to maximize their current-task vs. future-task reward

tradeoff. Notice that, we use the MCT strategy as a baseline to investigate the perfor-

mances of our OSL and LEA strategies that are designed around the agents’ exploitation of

the implicit and explicit learning actions.
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6.3.1 Myopic Current Task Strategy (MCT)

In this strategy, an agent myopically reasons about the value of a coalition and form coali-

tions such that each yields the maximum reward for the current task only, without engaging

in any implicit and explicit learning actions. In other words, the MCT strategy using agents

do not engage in the current task vs. future task reward tradeoff which is key to our ADLIT

problem. We write the Myopic form of Equation 6.8 as:

Qi(C,Bi) =
∑
κ

[Pr(κ|θC , TC) ·Ri(κ, θC)]− [ζ(ici,C , sci,C)] (6.10)

6.3.2 One-Step Lookahead Strategy (OSL)

In the One-Step Lookahead strategy, an agent focuses only on the next step of the coalition

formation round to calculate the future task reward (third term in Equation 6.8) when de-

termining the value of a proposed coalition. So, suppose that θCf is the resulting coalition

members’ types due to the implicit and explicit learning provided by the current coalition

C, and Tf is the future task for the next round of coalition formation, we write Equation 6.9

as:

Vi(B
0
i ) =

∑
Tf∈T

Pr(Tf ) ·
∑
θCf∈Θ

Pr(θCf |ici,C , sci,C , Tf , θC)

·
∑
κ

[Pr(κ|θCf , Tf ) ·Ri(κ, θCf )− Pr(κ|θC , Tf ) ·Ri(κ, θC)] (6.11)

where in Equation 6.11,

• Pr(Tf ) is the probability of seeing the Task Tf in a future coalition formation round

(captures the task openness);

• Pr(θCf ) is the probability of seeing the coalition members with types θCf in a future

coalition formation round (captures the agent openness);
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• Pr(θCf |ici,C , sci,C , Tf , θC) is the probability of achieving updated coalition member

type θCf for (1) task TC , (2) types θC , (3) implicit learning actions icC , and (4)

explicit learning actions scC ;

• Pr(κ|θC , TC) is the probability of achieving task solution quality κ for coalition mem-

ber types θC and current task TC ;

• Ri(κ, θC) is the reward of an agent i in coalitionC when they achieve solution quality

κ (Equation6.3).

So, the future task reward gain component in Equation 12 for an agent is then the

expected increase in the individual reward of that agent over (1) the set of all possible

tasks, (2) the set of all possible types of the coalition members, and (3) the set of possible

task solution qualities.

6.3.3 Learning by Exploration Strategy (LEA)

The key component of the current task vs. future task reward tradeoff in the ADLIT en-

vironment lies in the agents’ ability improve their types considering the openness and un-

certainty of the environment. However, to improve their types efficiently (e.g., with low

cost of learning), the agents have to learn the type change dynamics (Section 6.1) of the

environment. Since the agents have neither prior knowledge nor any central coordination

mechanism, they have to observe the impact of their participation in the varying learning

actions to learn the type change dynamics. Furthermore, each round of coalition formation

provides an agent a single opportunity to observe the result of its choice of the learning

action. So, during a coalition formation round, an agent may choose to exploit: i.e., form

coalitions based on the type change dynamics knowledge it has acquired, or explore: i.e.,

form coalitions and choose a new learning action (or a learning action whose impact it

has not observed enough) to better understand the impact of the chosen action on the type

change of the agents. Here, this balance between the exploration and exploitation is critical
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to the agents’ ability of utilizing the current task vs. future task reward tradeoff. Notice

that, the possible number of implicit and explicit learning actions in the ADLIT environ-

ment (Section 6.1) could be large. So, if the learning actions vary in terms of changing the

types of the agents and the learning cost, an agent can improve its reward tradeoff (Equa-

tion 6.6) even further by improving its own type and its coalition members’ types with

less cost. However, this exploration of the learning actions must be done with caution for

two reasons. First, while exploring, it is possible that an agent can actually hurt its reward

tradeoff by choosing the wrong learning actions. Second, due to the uncertainty associated

with the type change dynamics of the agents (Section 6.1), an agent may have to engage

in a learning action multiple times to closely approximate its effect on the types of the

participating learner agents. Once an agent has sufficiently explored its learning actions, it

should choose the learning action that yields the maximum reward tradeoff values for itself

and its coalition members. So, we need a strategy that would take all of these factors into

account and allow the agents to balance its exploration and exploitation effort regarding the

learning actions in ADLIT environment.

To balance the agents’ exploration and exploitation, we have designed the LEA strategy

as a refinement of the One-Step Lookahead strategy. The LEA strategy uses an idea similar

to simulated annealing (Russel and Norvig, 2003, p. 115) to provide a mechanism that

could be used by the agents to balance its exploration vs. exploitation of the environment

to choose more efficient learning actions over time. To define the LEA strategy, we modify

our One-Step Lookahead strategy (Equation6.9) as:

Vi(B
0
i ) =

∑
Tf∈T

Pr(Tf ) ·
∑
θCf∈Θ

Pr(θCf |ici,C , sci,C , Tf , θC)

·
∑
κ

[Pr(κ|θCf , Tf ) ·Ri(κ, θCf )− Pr(κ|θC , Tf ) ·Ri(κ, θC)

+ e
En(icC,scC,TC,θC )

Tm(icC,scC,TC,θC ) ] (6.12)
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Say we define Confidence conf(icC , scC , TC , θC) : icC × scC → Z to represent an

agent’s experience regarding the implicit and explicit learning actions icC , scC . This con-

fidence is proportional to the number of times the agent has observed the type change θCf

for given task TC , coalition member type θC , implicit learning action icC , explicit learning

actions scC . Then in Equation 6.12:

En(icC , scC , TC , θC) ∝ 1
conf(icC ,scC ,TC ,θC)∑

icC,scC∈I conf(icC ,scC ,TC ,θC)

(6.13)

represents the energy of the system, which is inversely proportional to the average con-

fidence of the agent over all possible implicit and explicit learning actions I.

Tm(icC , scC , TC , θC) ∝ 1

conf(icC , scC , TC , θC)
(6.14)

represents that the temperature of the system is inversely proportional to the confidence

conf(icC , scC , TC , θC).

The key idea behind our design of the LEA strategy lies in the use of the energy and

temperature to bias an agent’s estimated value of a coalition based on what an agent knows

about the type change dynamics (Section 6.1.2) in the environment. The first component

of Equation 6.12 is the same as Equation 6.11. As an improvement over the OSL strategy

in Equation 6.11, we have added an exponential term e
En(icC,scC,TC,θC )

Tm(icC,scC,TC,θC ) inside the summa-

tion. Our goal of adding this term to the components in Equation 6.12 is that the relative

differences in the values of the first and the second term (inside the braces) would enable

an agent to balance between explorative and exploitative behavior. In other words, we aim

to bias an agent’s estimated tradeoff values calculated using the first term of Equation 6.12

(similar to the OSL strategy in Equation 6.11) for a chosen implicit and explicit learning

action by the energy and temperature in the second term. During the initial rounds of coali-

tion formation, an agent would not have a high number of observations for some of the

implicit and explicit learning actions. This would yield a high value of the energy (due to
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the inverse proportionality in Equation 6.13) and then for those implicit and explicit learn-

ing actions icC , scC that have relatively smaller number of observations, the temperature

(Equation 6.14) would be low. Those high energy and low temperature values would yield

a high value for the e
En(icC,scC,TC,θC )

Tm(icC,scC,TC,θC ) term. As a result, the agent using the LEA strategy

would be more likely to explore the learning actions icC , scC whose impact it knows less

about. In that case, the agent’s evaluation of a coalition formation proposal will depend

more on the exploration of the impacts of the relatively unknown learning actions and less

on the exploitation of the learning actions it knows about.

Over time, as the agent observes the impacts of available learning actions, the opposite

scenario would occur. As an agent observes the impacts of the available learning actions in

the environment, the energy value En(icC , scC , TC , θC) would decrease (due to the inverse

proportionality in Equation 6.13). Then the temperature values for the implicit and explicit

learning actions icC , scC that an agent has high confidence about, will be high. Those high

energy and high temperature values would yield a lower value for the e
En(icC,scC,TC,θC )

Tm(icC,scC,TC,θC ) term

thereby diminishing its influence on the agent’s evaluation of a coalition (Equation 6.8). In

that case, the agent’s evaluation of a coalition formation proposal will depend more on

exploiting the implicit and explicit learning actions the agent knows about and less on

exploring new learning actions. Finally, notice that, if after the agent interacts with the

environment sufficiently long (yielding a low energy of the system), and the temperature for

a given implicit and explicit learning action remains low, that would mean, due to its not-so-

good impact on the types of the agents, the agent chose not to exploit those learning actions.

In that case, due to the low energy value (i.e., a lower value of the term e
En(icC,scC,TC,θC )

Tm(icC,scC,TC,θC ) ,

the agent using the LEA strategy would not choose those low-type-change-yielding implicit

and explicit learning actions.

To summarize, using the LEA strategy, an agent is able to balance its exploration of new

learning actions and exploitation of the learning actions it is confident about. Since not all

learning actions may change the types of the agents positively and since the environment
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is uncertain, the agents in the LEA strategy may perform poorly in the beginning due to

its exploration. However, as an agent gathers experience regarding the available learning

actions, it should be able to learn to choose the learning actions that yield optimal type

change but incur the lowest cost. That efficient use of the learning actions is likely to im-

prove the LEA agents’ performances over time. Later in our Results section (Section 6.6),

we investigate the impact of the LEA agents’ exploration and exploitation behavior.

6.3.4 Frequentist Learning of Environment Dynamics

To design the agent strategies, we formulate the type change of the agents due to the im-

plicit and explicit learning in the repeated coalition formation environment of ADLIT as

a partially observable MDP (POMDP) (a.k.a. a belief state MDP) (Dearden et al., 1999).

Let us assume that the agents i ∈ N have initial belief Bi that contains the estimations

regarding the dynamics and the openness of the environment. As an agent joins coalitions,

observes the result of its choice of coalition members and the learning actions, it updates

its beliefs and uses that updated belief to form coalitions in the next round. Say the set of

coalitions in ADLIT at time t is CSt and the belief of an agent i is Bt
i . If an agent i is in a

coalition C at time t and i observes coalitional outcome o ∈ O, then i updates its belief at

time t+ 1 as:

Bt+1
i (ν) =

Obst(κ|θC , TC)∑
κ∈KObs

t(κ|θC , TC)
(6.15)

Bt+1
i (θCf ) =

Obst(θCf )∑
θ∈ΘObs

t(θCf )
(6.16)

Bt+1
i (ϕ) =

Obst(TC)∑
κ∈T ∈T Obs

t(TC)
(6.17)
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Bt+1
i (ψ) =

Obst(∆θi|TC , θi, icC , scC)∑
∆θ Obs

t(∆θi|TC , θi, icC , scC)
(6.18)

In Equation 6.15-Equation 6.18:

• Obst(κ|θC , TC) denotes the frequency of observing task solution quality κ when the

coalition members type was θC and the task was TC

• Obst(TC) denotes the frequency of observing task TC

• Obst(∆θi|TC , θi, icC , scC) denotes the frequency of observing the individual type

after the agent of type θi have participated in a coalition C for task TC , implicit

learning action icC , and explicit learning action scC

Notice that in Equation 6.15-Equation 6.18, the agents use a frequentist (Amati, 2006)

approach where they use their observations to update their estimates of the probabilities.

6.4 Implementation

In this section, we first describe how we have adopted the coalition formation problem

described by (Chalkiadakis and Boutilier, 2008) for the ADLIT framework. Then we de-

scribe how the ADLIT framework is implemented in the agent-based simulation environ-

ment Repast.

6.4.1 Coalition Formation Environment Overview

The coalition formation environment in our implementation is an extension of the coalition

formation environment described in (Chalkiadakis and Boutilier, 2008) with the added pos-

sibility that the agents may improve their types by learning. According to our Assumption

3 (Section 6.1.1), in the adopted coalition formation environment, each agent has three dif-

ferent capabilities (Section 6.1.2): interface design, programming, and system engineering.
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For each of these capabilities, there are four possible expertise levels (Section 6.1.2): bad,

average, good, and expert. The numeric values associated with the expertise of the agents

are bad = 1, average = 2, good = 3, and expert = 4. So, for example, an agent i’s type

could be:

θi = {〈interface design, 1〉, 〈programming, 2〉, 〈systems engineering, 3〉} (6.19)

Notice that as previously discussed in the ADLIT Environment Subsection (Section 6.1.2),

we use a finite set of discrete values to represent the expertise of the agents, which is similar

to the original coalition formation scenario described in (Chalkiadakis and Boutilier, 2008),

for three reasons. First, we have chosen a finite set of discrete values since a continuous

range of values would rapidly (and infinitely) increase the number of possible agent types

(θi Section 6.1.2) in the environment. That increased number of possible agent types would

render the agent reasoning too complicated or even intractable to be used in a practical and

or scalable coalition formation scenario. Second, a continuous range of values (0, 100.0)

can be categorized or discretized into a finite set of discrete ranges, e.g., (0, 10), (10, 20.0)

or bins, i.e., that continuous range can be converted to a set of discrete values. Although

such discretization may reduce the resolution of the ability of observation of an agent, it

would increase the efficiency of the reasoning of the agents’ (i.e., who use that discretiza-

tion) and would allow the agents’ (i.e., who use that discretization) to better deal with the

noise in environment. Finally, since we evaluate our coalition formation protocol (Algo-

rithm 6.1 and Algorithm 6.2) and the approximation strategies (Section 6.3) by comparing

their performances with an approximation strategy (MCT Section 6.3.1) similar to the My-

opic Current Task strategy described in (Chalkiadakis and Boutilier, 2008), we decided

to have our coalition formation scenario to be similar to the original scenario described

in (Chalkiadakis and Boutilier, 2008) i.e., use discrete expertise values. In our setup, the

tasks are defined with required expertise values for each of the capabilities for the member
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agents. For example, a task Ti may be defined as:

Ti = {〈ID, 13〉, 〈PR, 2〉, 〈SE, 8〉} (6.20)

Here, ID denotes the required expertise for the interface designer, PR denotes the

required expertise for the programmers, and SE is the required expertise for the software

engineer.

The agents in our implemented environment participate in the coalition formation rounds

where the coalitions solve software development tasks. After solving each task, a coalition

earns rewards based on the quality of the solution prepared by them. This quality of the so-

lution of the software development task is determined by the task solution quality dynamics

(Section 6.1.2). The reward earned by the coalition is divided among the agents and each

agent receives an amount equal to its individual reward less its cost of implicit and explicit

learning actions. Furthermore, due to their participation in the learning actions, the coali-

tion members’ types change according to the type change dynamics (Section 6.1.2) of the

environment. Then the coalition formation process is repeated with the updated types of

the agents.

6.4.2 Randomization in the Simulation Environment

Since the ADLIT framework represents an uncertain environment, there is a need for ran-

domization based on certain distributions. For example, when the proposer agent is chosen

during the coalition formation protocol (Section 3), our implemented environment needs to

make a discrete random choice among the agents. To keep the choices of our simulation

random and our experiments replicable, in the beginning of the simulation run, we initialize

a uniform random number generator with a specified simulation seed. The uniform random

number generator is then used to make the random choices in the environment. We define
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the uniform random number generator as:

ι(i, j) = [i, j] ∀i, j ∈ R+ (6.21)

This uniform random number generator defined in Equation 6.21 is then used in our

simulation environment whenever the simulation needs to make a random choice among the

agents (e.g., choosing the proposer in the coalition protocol as described in Algorithm 6.1)

and tasks (e.g., choosing the task that the agents would solve at a certain time Assumption

12 in Section 6.1.1). Notice that our random number generator can generate both integer

and real numbers.

6.4.3 Task Solution Quality Dynamics

The task solution quality κ (Equation 6.1.2) for a task in the implementation of ADLIT is

divided into four levels bad, average, good, perfect. As we have discussed in Assumption

4 (Section 6.1.1), when a coalition solves a task, the quality of their solution is primarily

determined by the expertise of the members of that coalition and is affected by the uncer-

tainty in the environment. The quality of the solution of a task by a coalition C is thus

determined by the λ1 function which is unknown to the agents in ADLIT:

λ1(θC , TC) ∝


∑

i∈C βi −
∑

i∈TC βi If ι(0, 1) < ℵ1∑
i∈C βi −

∑
i∈TC βi + εT Otherwise

(6.22)

In Equation 6.22,
∑

i∈TC βi is the sum of the required expertise for solving task TC .

Furthermore, ℵ ∈ [0, 1] denotes the task solution quality uncertainty threshold. So, Equa-

tion 6.22 shows that the task solution quality is equal to the ratio of (1) the difference

between the sum of required expertise for the task and the sum of expertise of the members

of the coalition and (2) the total required expertise of the task when the uncertainty value

drawn from the random normal distribution falls below the uncertainty threshold. If that
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random value falls above the uncertainty threshold, the task solution quality is varied (in

the randomly chosen positive or negative direction) with the chosen value of εT .

6.4.4 Coalitional and Individual Reward

Depending on the quality of the solution κC , the reward of a coalition C for a task TC is

determined by the function ρ (Section 6.1.2):

ρ(κ) :
κC
κmax

(6.23)

Here, κC ∈ Z and κmax ∈ Z is the maximum possible solution quality of the task.

So, according to Equation 6.23, the reward of a coalition is proportional to the ratio of the

solution quality of the task they solved and the maximum possible quality of that task. As

a result, a coalition is able to achieve maximum reward if the quality of their solution for

the task is maximum. Furthermore, the individual reward of an agent i after its coalition C

solves a task TC is:

Ri(C) ∝ Rmax,C ×
κC
κmax

× βi
βmax

− ζ(ici,C , sci,C) (6.24)

In Equation 6.24, Rmax,C ∈ R is the maximum task reward of TC and ζ(ici,C , sci,C) is

the total cost of implicit ici,C and explicit sci,C learning actions of agent i. In this manner,

each agent receives rewards based on its expertise. This is a fair distribution of the rewards

to the individual agents since the expertise of an individual agent directly contributes to

the quality of the solution of a task (Assumption 4 in Section 6.1.1). Since the coalitional

reward depends on the solution quality (Assumption 10 in Section 6.1.1), each member’s

expertise directly impacts the total amount of reward its coalition receives. In other words,

higher expertise (i.e., higher βi) of an agent expectedly (due to the task solution uncertainty)

leads to higher rewards for its coalition after solving a task. Thus, it is only fair that an

expert member receives a higher reward than a member who has low expertise after solving
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a task.

6.4.5 Implicit and Explicit Learning Actions

As alluded to in Assumption 5 (Section 6.1.1) the agents in ADLIT are able to utilize

implicit and explicit learning actions to change their types. In our implementation, we have

chosen the following set of implicit and explicit learning actions described in (Inaba et al.,

2000). Table 6.1 shows the implicit and explicit learning actions and our notations.

Table 6.1: Chosen Implicit and Explicit Learning Actions

Learning Action Type of Learning Denoted by
None No Learning ic0

Observation Learning by Observation ic1

Discussion Learning by Communication sc1

Teaching Learning by being Taught sc2

Apprenticeship Learning by Apprenticeship sc3

6.4.6 Impact and Cost of Learning

Educational psychology researchers (e.g., (Hoppe et al., 2003)) discuss that the impact of a

learning action on the expertise of the participating agents may vary depending on a variety

of factors in the problem domain. This implies that, for a given environment, some learning

actions could be more effective than others. So, in our current implementation of ADLIT

(following Assumption 2.1 in Section 8), we have used the following order of effectiveness

of the learning actions:

ic1 < sc1 < sc2 < sc3 (6.25)

Furthermore, Equation 6.25 also describes the order of the learning cost incurred by

the agents who participate in these learning actions. So, the cost of engaging in a learning
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action is proportional to its effectiveness in changing the type of the participating agent(s).

In other words, the more effective a learning action is in terms of changing the type of the

agent, the higher the cost incurred by the agent who uses that learning action. If we use

lo(scl) to denote the order of effectiveness of the learning action scl, the cost of the learning

action scl is:

ζ(scl) ∝ lo(scl) (6.26)

6.4.7 Type Change Dynamics

As described in the Assumption 5 (Section 6.1.1), the type change of an agent i due to

its implicit and explicit learning actions with agent j is calculated using the following λ2

function which is unknown to the agents:

λ2(θi, θj, ic
l
i,j, sc

l
j,i) ∝


(βi − βj) + lo(icl) + lo(scl) If lo(0, 1) < ℵ2

(βi − βj) + lo(icl) + lo(scl)± εθ Otherwise
(6.27)

In Equation 6.27, ℵ2 ∈ [0, 1] is the learning probability uncertainty threshold. In Equa-

tion 6.27, we also assume that the randomly chosen εθ ∈ [βmin, βmax]. Notice that, as

described in the Coalition Formation Overview subsection above, we assume that the ex-

pertise of the agents, i.e., βis, and consequently the difference in their expertise (βi − βj)s,

are discretized and those values are in the range [0, 3]. Furthermore, we have assumed

an order of effectiveness of the implicit and explicit learning actions which ranges from

[1, 4]. So, according to our assumed discretization, the values of εθ will be εθ ≈ (βj − βi),

εθ ≈ lo(icl), and εθ ≈ lo(scl).

According to Equation 6.27, the change in a learner’s expertise is equal to the differ-

ence in the interacting agents’ expertise plus the learning order factor when the probability
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value drawn from the random normal distribution falls below the uncertainty threshold.

Otherwise-if the probability value falls above the uncertainty threshold, the change in the

learner’s expertise is slightly perturbed from the actual value by the amount εθ.

This design of the learning function implies that, if the difference between the expertise

values of the agents’ is high and the order of the learning action is high, then the improve-

ment in expertise will be high. Furthermore, if the learner agent’s expertise is higher than

the agent it is learning from, the learning function’s outcome could be negative depending

on the value of the learning order factor—i.e., it is possible to learn the wrong thing!. No-

tice that our consideration of the impact of the difference in the interacting agent’s expertise

on the learner’s learning outcome is derived from the reported educational psychology and

collaborative learning research (Stahl, 2004; Cress and Kimmerle, 2008) that suggest that

the amount of expertise gain through successful collaborative interactions depends upon

the difference in the expertise of the learners.

Equation 6.27 represents a key component of the uncertainty in the ADLIT environ-

ment. By choosing the different values of the threshold εθ in Equation 6.27, we will be

able to change the agents’ ability to use implicit and explicit learning for type change. For

example, if the threshold value is set high (e.g., 0.9, or 90% of the time), the agents’ im-

plicit and explicit learning actions would be predictable allowing the agents to more easily

learn the impacts of their choices of learning actions. That knowledge regarding that im-

pact would allow the agents to choose the most cost-effective learning action leading to

higher type change and higher utility (reward-cost) over time. On the other hand, if the

threshold value is chosen to be very low (e.g., 0.1), the agents would observe different out-

comes for the same chosen implicit or explicit learning action in a coalition. This would

lower the agents’ ability to effectively use the type change to improve their utility over

time. Although the exact value of an environment parameter is not important in multiagent

simulation environments (Bonabeau, 2002) choosing a very low value would mean that for

the same input values of Equation 25, the agents would observe different outcomes. Thus,
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those low values would make it difficult for the agents to learn the type change dynamics of

the environment negatively affecting their performances. We discuss how the chosen un-

certainty values impact the ADLIT agents’ performances in our results (cf. Section 6.6.2).

6.4.8 Implementation in Repast Simulation Environment

To investigate the impact and effectiveness of our proposed strategies, we have imple-

mented the ADLIT framework in the JAVA-version of the agent-based simulation environ-

ment Repast (Repast, 2009). Inside the simulation environment of Repast, we have devel-

oped 32 Java classes for the interconnected elements (e.g., agent, task, model, reward) of

the ADLIT environment. The developed source code (size 500 KB), the executable pro-

gram (size 18MB), and the documentation (in Javadoc format) are available in the author’s

website (http://cse.unl.edu/~knobel/research). Figure 6.1 shows the GUI

of our simulation tool implemented in Repast.

The GUI of Repast is designed to run the simulation for a specified set of values

of the parameters for debugging and testing purposes. To run long experiments that in-

volve varying the values of multiple parameters of the ADLIT environment, we have used

a parameter file and run Repast in the batch simulation mode on the Prairiefire cluster

(http://hcc.unl.edu). Prairiefire is a 90 Node Production-mode LINUX cluster

where each node contains (1) 2 Opteron 248, (2) 2 Opteron 275, and (3) 8 Opteron 870 pro-

cessors and (2.2GHz/64 bit) per node. Each node provides a minimum of 4 GB PC2700

of memory per node. The Prairifire cluster is connected to the internet with an Infiniband

Myrinet (2 Gb/s) Gigabit Ethernet. Furthermore, the Prairifire cluster contains (1) 1 TB

SCSI RAID (XFS over NFS) and (2) 6 TB SATA RAID (ReiserFS over NFS) storage sys-

tem providing 20 GB storage space per node. Prairifire provides 8 nodes per user at one

time allowing us to run 8 experiments simultaneously. Since our simulation involves rea-

soning and interaction of a large number of agents over a large parameter space (e.g., the

total number of possible combinations of varying number of agents, tasks, uncertainties,

http://cse.unl.edu/~knobel/research
http://hcc.unl.edu
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Figure 6.1: Repast GUI for ADLIT

etc.), the computational power and the ability to run multiple simultaneous experiments in

Prairifire have provided us the opportunity to complete our experiments and collect results

in a relatively short amount of time. For our experiments to be discussed in the next section,

we regularly used 8 nodes at a time, and each run lasted about 96 hours.

6.4.9 Openness of the Environment

In ADLIT environment, we simulate the task openness by (1) generating a pool of poten-

tial tasks by creating tasks with different expertise requirements, (2) replicating the set of

potential task list to meet the total number of tasks in the environment, and (3) randomly

choosing the sequence of tasks are available for the agent coalitions to solve. Furthermore,



www.manaraa.com

143

we simulate agent openness by randomly selecting and replacing one or more agents dur-

ing the coalition formation round. Each selected agent is replaced with a new agent with

randomly selected expertise for its capabilities. Furthermore, the ratio of agents that are

replaced by newcomers is equal to the agent openness of the environment.

6.5 Experiment Setup

We have run a set of simulation experiments in the Repast environment to understand the

impact of the implicit and explicit learning interactions in the environment and the perfor-

mance of our approximation strategies. To be specific, using the default values shown in

Table 2, we have run simulations in our Repast environment and collected detailed data on

the performances of the agents, their coalitions, and their type changes. To reduce the ran-

domness in our collected results, we have replicated all experiments with the same set of 10

different simulation seeds. Table 6.2 summarizes the data collected in the simulation runs

of our experiment. This data is then analyzed and presented in our Results (Section 6.6).

Table 6.2: Default Values of the Simulation Parameters used
in Experiments

Parameter Default Values
Number of Agents |N | (Section 6.1.2) 60
Number of Tasks |T | (Section 6.1.2) 200
Neighborhood Size |N\e|(Algorithm 6.1) 9
Reward Estimation Strategies MCT, OSL, LEA
Randomly Chosen Simulation Seeds for
Replication

352495638, 133653767, 515637740,
296241537, 35543328, 791347241,
734806509, 547081818, 376005653,
893883484

Agent Expertise Ratio Array (Assump-
tion 6 in Section 6.1.1)

{0.6, 0.1, 0.1, 0.1, 0.1}

Maximum Task Reward (Assumption 1 in
Section 6.1.1)

300.0

Length of Coalition Formation Protocol
Round (Section 6.2)

360
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Parameter Default Values
Task Solution Quality Uncertainty
Threshold (ℵ1 in Equation 6.23)

0.7

Task Solution Quality Variation Constant
(εT in Equation 6.23)

1

Task Openness (Assumption 13 Sec-
tion 6.1.1)

0.1

Task Difficulty (Assumption 13 Sec-
tion 6.1.1)

1

Agent Openness (Assumption 14 Sec-
tion 6.1.1)

0.1

Type Change Uncertainty Threshold (ℵ2

Equation 6.27)
0.7

Task Solution Quality Variation Constant
(εT Equation 6.27)

1

No Learning Cost Constant (Assumption
7 Section 6.1.1)

0.0

Observation Cost Constant (Assumption
7 Section 6.1.1)

1.0

Teaching Cost Constant (Assumption 7
Section 6.1.1)

2.0

Discussion Cost Constant (Assumption 7
Section 6.1.1)

2.5

Apprenticeship Cost Constant (Assump-
tion 7 Section 6.1.1)

3.0

Learning Effectiveness and Cost Order
(Equation 6.25)

ic1 = 1,sc1 = 2,sc2 = 3,sc3 = 4

Learning Cost Proportionality Constant
(Equation 6.26)

10

Learning Variation Constant (εθ Equa-
tion 6.27)

1

Table 6.3: Simulation Outcome Data Collected After Run-
ning Our Experiment.

Tracked Variable Description
totalUtility (Equation 6.4) Total Reward Minus the Total Learning

Cost of the Agents
totalLearningCost (Equation 6.4) Total Learning Cost Paid by the Agents
totalTaskSolutionQuality (Equation 6.4) Total Task Solution Quality Achieved by

the Agents
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Tracked Variable Description
NONE_LEARNING_COUNT, TEACH-
ING_LEARNING_COUNT, APPREN-
TICESHIP_LEARNING_COUNT,
OBSERVATION_LEARNING_COUNT,
DISCUSSION_LEARNING_COUNT

Total learning action counts

PROGRAMMER_BAD, PRO-
GRAMMER_AVERAGE, PRO-
GRAMMER_GOOD, PROGRAM-
MER_EXPERT

Number of Agents with different exper-
tise values for programmer capability

INTERFACE_DESIGNER_BAD, IN-
TERFACE_DESIGNER_AVERAGE,
INTERFACE_DESIGNER_GOOD,
INTERFACE_DESIGNER_EXPERT

Number of Agents with different exper-
tise values for interfacedesigner capa-
bility

SYSTEMS_ENGINEER_BAD, SYS-
TEMS_ENGINEER_AVERAGE, SYS-
TEMS_ENGINEER_GOOD, SYS-
TEMS_ENGINEER_EXPERT

Number of Agents with different exper-
tise values for systemsengineer capabil-
ity

To understand how the ADLIT agents are learning the type change and task open-

ness dynamics of the environment, we also record the probability values observed (Sec-

tion 6.3.4) by a randomly selected agent. Since all agents use the same frequentist learn-

ing, this randomly selected agent’s learned probability values represent how the other

agents are learning task solution dynamics (Equation 6.23) and the type change dynam-

ics (Equation 6.27) in ADLIT. Figure 6.2 shows a snapshot of how the selected agent’s

estimation of the probability of encountering the tasks changes over time. Figure 6.2

uses three visual dimensions to depict the selected agent’s estimation of the task open-

ness probability values. The x-axis represents the different tasks in the ADLIT environ-

ment, the y-axis represents the coalition formation rounds in which the agent encoun-

ters and solves a variety of tasks, and the darkness of the cell represents the probability

value where a darker cell indicates a higher probability value. The marked area in Fig-

ure 6.2 shows the selected agent’s estimation of the probability of encountering a task

(Task = 〈Interface Designer = 5, P rogrammer = 3, Software Engineer = 8〉 in
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the next round of coalition formation. As an agent encounters the randomly distributed

tasks, it updates the probability of encountering that task again in the next round. So, the

change in the darkness of the cells over time shows how our chosen agent captures the

change in the probability of encountering a particular task. Later in Section 6.6 we will in-

vestigate how the agents’ frequentist learning impacts their performances in terms of their

earned utility.

Figure 6.2: Change in the Probability of Encountering a Task as Learned by a Randomly
Selected Agent.
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6.6 Results

In this section, we discuss our results of our experiments that are designed to investigate the

performances of our teaching and learning-based coalition formation protocol and the ap-

proximation strategies in terms of total utility, learning cost, and the type changes achieved

by the agents. In our results, we compare the performance of the agent coalitions formed

using implicit and explicit learning based approximation strategies (OSL and LEA in Sec-

tion 6.3) against the coalitions formed using two variations of the MCT strategy (Sec-

tion 6.3) — i.e., a strategy that aims to maximize the current-task reward of the agent

coalitions without taking advantage of the learning-induced type-change and the current-

task vs. future-task reward tradeoff. In the first variation MCT-TSL, the agents use a

frequentist learning approach to learn the task solution quality dynamics (Section 6.1.2),

i.e., the agents learn to estimate the function λ1 (Equation 6.23). In the second variation

MCT+TSL, the agents know the task solution quality probability function λ1 in the envi-

ronment. Notice that the agents using OSL and LEA strategies learn the probability of (1)

achieving a task solution quality for given types of coalition members and (2) achieving

a type change for their chosen implicit and explicit learning actions while participating in

the coalition formation protocol. So, the consideration of these two variations of the MCT

strategy, i.e., strategies that contain agents who learn the task solution quality probability

and who do not, will allow us to isolate and better understand the impact of the OSL and

LEA agents’ strategy of type change through implicit and explicit learning actions. For

organizing our findings, we have divided our discussions of the results into the following

subsections: Feasibility and Impact (Section 6.6.1), Robustness (Section 6.6.2), Scalability

(Section 6.6.3), and Summary (Section 6.6.4):

• Feasibility and Impact — The first objective of this subsection is to validate the fea-

sibility of exploiting the current task vs. future task reward tradeoff arising from the

type change of the agents in improving the utility of the agents in ADLIT. Our second
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objective is to compare and contrast the utilities of the agents using the MCT+TSL,

MCT-TSL, OSL, or LEA strategies to understand which of these strategies allow the

agents achieve the best performance (in terms of utility) and why. Finally, our last

objective is to identify whether or how our design of the strategies of the agents lead

to any emergent behavior of the agents.

• Robustness — Although our approximation strategies are designed to take advantage

of the type-changing ability of the agents’ implicit and explicit learning actions, there

are possible environmental aspects that may negatively impact the effectiveness of

those strategies. The objective of our investigations in this subsection is to stress test

the performance of our coalition formation protocol and the approximation strategies

OSL and LEA in the midst of a variety of detrimental environmental factors, i.e., the

(1) task and agent openness (Section 6.1.2), (2) the uncertainty of (a) task solution

quality outcome for a chosen set of coalition members (Equation 6.23) and (b) type

change outcome for a chosen learner and teacher agents and implicit and explicit

learning actions (Equation 6.27), and (3) the learning cost (Equation 6.26).

• Scalability — Researchers define scalability of multiagent systems as the overall ef-

fect of processing times on performance (Rana and Stout, 2000) when the size and

scale of the system increases. In this subsection, we aim to establish that, the per-

formance improvement (in terms of the utility) that can be gained by using ADLIT’s

coalition formation protocol and the approximation strategies are independent of, to

some extent, the amount of processing time spent by the agents. Closer inspection of

the coalition formation protocol and the approximation strategies in ADLIT reveals

that, the length of the coalition formation round (Section 6.2) and the size of the

neighborhood (|Nne| Algorithm 6.1) together determine the total computational time

and resources spent by the agents. So, for our empirical scalability investigation,

we first investigate the impact of the length of the coalition formation round (i.e.,
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the time spent by the agents forming or joining coalitions and choosing implicit and

explicit learning actions) on the earned utility of the agents using the OSL and LEA

strategies. Then, we investigate the impact of the size of the neighborhood on (1) the

total utility earned and (2) the time required for reasoning and coalition forming by

the agents using the OSL and LEA strategies.

• Summary — Here we summarize our findings discussed in the feasibility, robust-

ness, and scalability subsections.

6.6.1 Feasibility and Impact

Here we have run the simulation experiment with the default values described in Table 6.2

and collected the results for comparing the utility and type change achieved by the agents

using the different approximation strategies. Figure 6.3 shows the utility earned by the

agents in the ADLIT environment over all tasks for varying approximation strategies. As

described in Equation 6.24, the total utility earned by an agent after solving a set of tasks

in ADLIT is the total individual reward minus the cost of the implicit and explicit learning

actions of that agent. Furthermore, Figure 6.4 shows the total task solution quality achieved

by the agents in the ADLIT environment. Figures 6.3 and 6.4 show that the agents using

the MCT+TSL strategy are able to earn higher total utility and higher task solution quality

and higher utility than the agents using the MCT-TSL algorithm over time. This is due to

the fact that the MCT+TSL agents know the task solution quality dynamics (Section 6.1.2)

whereas the MCT-TSL agents have to learn over time to estimate that. So, initially when

the MCT-TSL agents join coalitions, they do not often choose the set of agents (i.e., in the

protocol shown in Algorithm 6.1 and 6.2) that would yield the maximal reward because

of: (1) lack of information (e.g., when an agent is new) and (2) inaccurate estimation of

the task solution quality dynamics (Equation 6.23) due to uncertainty. Such bad choices

then negatively impact the solution quality of their solved task reducing their total reward

earned by solving the specified set of tasks.
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Figure 6.3: Total Utility Earned by the Agents using the MCT, OSL, and LEA Approxima-
tion Strategies over All Tasks.

Figures 6.4 and 6.5 also show that, over time, the agents that use the OSL and LEA

strategies are able to earn statistically significantly higher utility compared to the MCT+TSL

and MCT-TSL agents, which are our baseline agents. To be specific, when number of tasks

> 131, (Figure 6.3), the total utility earned by the agents using OSL and LEA strategies

are statistically significantly higher (p < 0.05) than the agents that use the MCT-TSL and

MCT+TSL strategies. Figure 6.5 shows that, initially (number Of Tasks < 131), the OSL

and LEA agents achieve lower task solution quality than the MCT+TSL and MCT-TSL

agents. However, over time (number Of Tasks > 131), the OSL and LEA agents are able to

solve the tasks with higher solution quality which lead to their higher utility. This ability of

the OSL and LEA agents being able to solve the tasks better over time can be explained by

their type change through implicit and explicit learning interactions. In the ADLIT envi-

ronment, the agents’ ability to solve a task better, i.e., achieve higher task solution quality,

depend upon their types, or in other words, their expertise values for their capabilities.

Figure 6.5 compares the weighted agent type values for the OSL, LEA, MCT+TSL, and
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Figure 6.4: Total Weighted (by multiplying with Task Difficulty) Task Solution Quality
Achieved by the Agents using the MCT, OSL, and LEA Approximation Strategies over All
Tasks.

MCT-TSL strategies where the weighted agent type count is calculated for the (1) Inter-

face Designer, (2) Programmer, and (3) System Engineer capabilities of agents using the

Equation 6.28.

weighted agent type count = 4× number of expert agents

+ 3× number of good agents

+ 2× number of average agents

+ 1× number of bad agents (6.28)

According to Equation 6.28, a group of agents who have high expertise values would

have a higher agent type count for a chosen capability than than a group of agents who

have low expertise values. Figure 6.5 shows that over time (i.e., when number of tasks
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< 70 for LEA agents and number of tasks > 100 for OSL), the OSL and LEA agents can

achieve statistically significantly higher (p < 0.05) weighted agent type counts compared

to the MCT+TSL and MCT-TSL agents through implicit and explicit learning actions (Fig-

ure 6.6). That improvement of expertise then allow the agents to solve the assigned tasks

better (e.g., achieve the higher task solution quality in Figure 6.4) and earn higher utilities

over time (Figure 6.3). Since, the total utility of the agents is their reward minus their learn-

ing cost, the results here also indicate that the OSL and LEA agents’ use of current task and

future task reward tradeoff allow them to increase their earned reward enough to offset the

incurred learning cost and obtain statistically significantly higher (p < 0.05) utility. Note

that there is an observation of interest in Figure 6.5: from 0 task to 10 tasks, both OSL

and LEA agents’ performances drop. This is because initially the OSL and LEA agents

do not have any knowledge about the impacts of their chosen implicit and explicit learning

actions. As the agents learn from or teach other agents during coalition formation rounds,

they update their probability using their observations to learn that impact. Furthermore, it

is possible for the agents to actually degrade their own types by choosing the wrong teacher

and learning action (cf. Equation 6.27). So, during the initial rounds of coalition forma-

tions, the OSL and LEA agents explore the various implicit and explicit learning actions

and suffer the negative consequences (in terms or type degradation) of choosing the wrong

learning actions.

Figure 6.6 shows the total number of learning actions used by the OSL and LEA agents

over all tasks. We observe that in every round of coalition formation a small number of

agents engage in some implicit and explicit learning actions. This is interesting since, due

to the agents’ consideration of the reward tradeoff, we might expect all OSL and LEA

agents to start learning in the initial coalition formation rounds and then reduce their learn-

ing actions over time. Looking into this more closely, we realize that this pattern of OSL

and LEA agents’ participation in the learning actions is due to the dyadic nature of the ex-

plicit agent learning and the characteristic of the ADLIT environment. First, as discussed
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Figure 6.5: Total (Interface Designer+Programmer+Software Engineer) Weighted Agent
Type Count of the Agents using the MCT, OSL, and LEA Approximation Strategies over
All Tasks.

in Section 6.4.5, except Learning by Observation, all other learning actions require the par-

ticipation of two agents in the ADLIT environment. However, the agents in the ADLIT

environment have differing beliefs regarding the impacts of the learning actions on the

types of the agents (Equation 6.3.4) due to (1) the learning uncertainty (Assumption 6 Sec-

tion 6.1.1) and (2) partial observability (Assumption 15 Section 6.1.1). As a result, when

joining or forming a coalition in a given round (Algorithm 6.1), not all agents are able to

find suitable teachers or learners that they would like to teach to or learn from. Second, the

OSL and LEA agents have to explore the uncertain environment to learn (Equation 6.3.4)

the impact of their learning actions. So, it is possible that during exploration, some of the

agents may end up degrading their types instead of improving while participating in the im-

plicit and explicit learning. Finally, as we have discussed in Section 6.4.5, not all learning

actions yield the same amount of type improvement. It is possible that an agent may have

to participate in multiple learning actions over the tasks to achieve the type improvement
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it wants (cf. Figure 6.5). All of these three scenarios thus explain the pattern of implicit

and explicit learning shown in Figure 6.6. Finally, the OSL and LEA agents’ participation

pattern in the learning actions (Figure 6.6) along with their achieved type improvement

(Figure 6.5) indicate that despite the uncertain and partially observable environment, those

agents are able to improve their own types and the types of their coalition members, thereby

allowing them to achieve statistically significantly higher utility over time.

Figure 6.6: Total Number of Implicit and Explicit Learning Actions
(TEACHING+OBSERVATION+DISCUSSION+APPRENTICESHIP-NONE) of the
Agents over All Tasks.

If we compare the performances of the agents using the LEA and OSL strategies, Fig-

ures 6.3, 6.4, and 6.5 show that over time, the agents using the LEA strategy earn slightly

lower task solution quality but achieve higher total utility. This result can be explained by

the comparatively more efficient use of implicit and explicit learning actions of the LEA

agents. Notice that, according to Equation 6.27, there are a large number of agent type

combinations (e.g., an agent with BAD Expertise learning from an agent with Good exper-

tise) and implicit and explicit learning actions that are possible in the ADLIT environment.

However, as indicated in Equation 6.25, our implementation assumes there is an order of

(1) the impact (in terms of how well it changes the types) and (2) the cost of the implicit
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and explicit learning actions between a teacher and a learner. Given that the agents using

the OSL and LEA strategies learn to estimate the λ2 (Equation 6.27) function and that the

agents’ total utility is its total individual actual rewards after subtracting the learning cost,

the agents who can learn the most efficient way of achieving the type change will achieve

a higher utility. Figure 6.7 shows the differences in the total learning cost incurred by the

agents using the LEA and OSL strategies. In Figure 6.7, we see that initially the LEA

agents incur a higher learning cost but over time (number of tasks> 31), the LEA agents

are able to learn more efficiently. This more efficient learning of the LEA agents is due

to their exploration of the possible implicit and explicit learning actions. Since the agents

using the OSL strategy (Equation 6.11) looks only one step ahead, focusing on improving

their agent types for the tasks that are most likely to occur in the next step, which limits

their exploration of the implicit and explicit learning actions. On the other hand, the LEA

strategy (Equation 6.12) makes the agents explore their options (types of coalition mem-

bers, implicit and explicit learning actions, etc.) more. For example, the OSL agents are

more likely to accept a coalition proposal (Algorithm 6.1) if it means it can earn higher

actual rewards for the next task, even if such acceptance would lead to less efficient im-

plicit and explicit learning actions (i.e., provided by the coalition members). On the other

hand, the energy and temperature terms in the LEA strategy (Equation 6.12) make the value

of such a coalition low unless the coalition formation agent is equally confident about the

impact of all available implicit and explicit learning actions. That means, even though the

LEA agents may incur a higher cost initially (during exploration), over time, those agents

will be able to choose more efficient implicit and explicit learning actions. That improved

ability then eventually leads to significant reduction in the learning cost leading to higher

utility despite the slightly lower task solution quality.
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Figure 6.7: Difference in Total Learning Cost of the Agents Using LEA and OSL Approx-
imation Strategies (LEA−OSL) over All Tasks.

6.6.2 Robustness

In this section, we investigate how the performances of the ADLIT agents are impacted

by the task and agent openness, the learning cost, and the learning- and task solution

quality- related uncertainty in the environment. Our goal here is to evaluate the robust-

ness of our coalition formation protocol and the approximation strategies against these

potentially detrimental environmental factors.

Task Openness

The task openness in the ADLIT environment denotes the percentage of new tasks encoun-

tered by the agents. Figure 6.8 shows the total utility earned by the agents over all tasks for

varying task openness.

Figure 6.8 shows that when task openness is low (< 0.5), the agents using the OSL and

LEA strategies are able to earn statistically significantly higher (p < 0.05) utility compared

to the MCT+TSL and MCT-TSL agents. However, when the task openness is high, i.e.,

0.5 or higher, the OSL and LEA agents cannot earn higher utility than the MCT+TSL



www.manaraa.com

157

Figure 6.8: Total Utility Earned by the Agents Over All Tasks for Varying Task Openness.

agents. The task openness in ADLIT represents how often the agents encounter new tasks.

Due to our design of the OSL and LEA agents’ estimation values, if the task openness is

high, the agents would reduce their learning actions. That is because, if the agents see that

they have a very low probability to encounter a task more than once, the reward tradeoff

value calculated in Equation 6.11, 6.12 would be low. In other words, they will realize

that learning from other agents and/or training their coalition members would not improve

their future task reward over time. Upon realizing that, the OSL and LEA agents will

reduce their implicit and explicit learning actions. Further investigation into the agents’

learning actions shows that (Figures Figure 6.9 and Figure 6.10) that, as the task openness

is increased, the OSL and LEA agents reduce their implicit and explicit learning actions

and are not able to improve their types (Figure 6.11). As a result, for high task openness,

the OSL and LEA agents are not able to achieve higher task solution quality (task solution

quality statistically not different p < 0.05) and their earned utility is similar to that of

the MCT+TSL and MCT-TSL agents. The observations here show that ADLIT agents’
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performance improvements achieved through type change be diminished for environments

that have high task openness. This is expected since the current-task vs. future-task reward

tradeoff is based on the idea that the agents improve their types only if they will be able to

use that improvement to earn higher rewards in future.

Figure 6.9: Total Implicit+Explicit Learning Action Count of OSL Agents for Varying Task
Openness.

Agent Openness

Figure 6.12 shows the average total utility of the agents using the different strategies over

all tasks for varying agent openness. Figure 6.12 shows that the agents using the OSL and

LEA are able to earn statistically significantly higher (p < 0.05) utility compared to the

agents using the MCT+TSL and MCT-TSL strategies. Furthermore, Figure 6.13 shows

that the OSL and LEA agents are able to improve their types for all agent openness val-

ues, which explains their ability to solve the tasks better (Figure 6.14) and their higher

utility. This result is unexpected since high agent openness means a large ratio of agents,

who have improved their types and have learned the environment dynamics, are randomly

replaced. When those trained agents are replaced by random agents (i.e., types are ran-
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Figure 6.10: Total Implicit+Explicit Learning Action Count of LEA Agents for Varying
Task Openness.

domly selected), it should negatively impact the overall performance of all OSL and LEA

agents since the trained agents do not get to achieve the increased reward over time. Fur-

thermore, the randomly selected agents now have to incur the cost of learning to improve

their own types and have to learn the task solution and learning probabilities that enable

them to improve their types over time. As a result, such random replacement is likely to

lead to a diminished performance of the agents and one may expect the OSL and LEA

agents to achieve a performance similar to the MCT+TSL and MCT-TSL agents who do

not engage in type change. However, the performance and agent type improvements in

Figure 6.12-6.13 of the OSL and LEA agents can be explained by the impact of the agents’

local implicit and explicit learning actions on the globally emergent performance improve-

ment of all agents in the environment (as discussed in Assumption 8 in Section 6.1.1).

Upon further investigation, we find the cause of the above unexpected observation.

First, as discussed in Section 6.3, the OSL and LEA agents exploit the current task vs.

future task reward tradeoff by improving their types through the use of learning actions.

To implement agent openness, a randomly selected set of agents are replaced by random
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Figure 6.11: Total (Interface Designer+Programmer+Software Engineer) Weighted Agent
Type Count of the Agents using the MCT, OSL, and LEA Approximation Strategies over
All Tasks for Varying Task Openness.

agents over time. However, not all agents that have been selected to be replaced are re-

placed at the same time. When a set of agents are replaced, the remaining agents, who have

improved their types and learned (frequentist learning) the task solution and learning prob-

abilities can help the newly introduced agents improve their types. This is help is provided

in two ways. First, due to our design of the coalition formation protocol and the dyadic na-

ture of the agents’ learning (Equation 6.4.6), the selection of a learning action of an agent

requires the agreement of one of its coalition members. As a result, a newcomer agent

that is forming coalitions with one or more experienced agents in its coalition formation

proposal is likely to select the optimal learning action because those experienced members

will not agree to a suboptimal action. In addition, the OSL and LEA agents’ calculation

of the value of a coalition allows the agents to take the probability of seeing the trained

agents in future coalitions (Pr(θCf ) in Equation 6.11 and Equation 6.12) into account. This

means, when a large number of agents are replaced in the environment, this probability
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Figure 6.12: Total Utility of Agents for Varying Agent Openness.

value would be small and may lead to the agents reducing their implicit and explicit learn-

ing actions. However, the improved types of the agents in Figure 6.13 indicate that the

OSL and LEA agents did not cease their learning actions for high agent openness. This

effect can also be attributed to by the factor [Pr(κ|θCf ) − Pr(κ|θC)] in Equation 6.11 and

Equation 6.12 where that factor denotes the expected change in the task solution quality

due to the coalition-forming agents’ type change. When the agents already have improved

types (i.e., the task solution quality improvement from type change is small), this factor’s

value would be small and the agents would not engage in implicit or explicit learning. On

the other hand, if the coalition-forming agents’ types are low, the value of this second fac-

tor would be high and compensate for the low probability of value Pr(θCf ). As a result, if

the coalition-forming agents’ types are low, the OSL and LEA agents would continue to

improve their types by implicit and explicit learning actions. Then that type change would

lead to statistically significantly (p < 0.05) higher utility over time. To summarize, due to

the globally emergent type improvement of the OSL and LEA agents’ local type-changing
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decisions, the agents are still able to earn statistically significantly (p < 0.05) higher util-

ity even when a large number of agents are replaced in the environment due to high agent

openness.

Figure 6.13: Type Change of Agents for Varying Agent Openness.

Learning Probability Uncertainty

Figure 6.15 shows the total utility of the agents using different approximation strategies

over varying learning probability uncertainty. Furthermore, Figure 6.17 shows the agents’

weighted agent type count over varying learning probability uncertainty.

Our results show that, even for high learning probability uncertainty values (ℵ2 in

Equation 6.27), the OSL and LEA agents are able to earn statistically significantly higher

(p < 0.05) utility than the MCT+TSL and MCT-TSL agents. This is unexpected. As

described in Equation 6.27, the learning probability uncertainty determines whether the

output of the learning transition function is dependent upon the types of the agents and

the learning action or whether output is generated randomly. The key difference between
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Figure 6.14: Total Task Solution Quality for All Tasks over Varying Agent Openness.

the OSL and LEA agents and the MCT agents (MCT+TSL, MCT-TSL) is that the former

types of agents try to improve their earned utility values using implicit and explicit learn-

ing actions. For the OSL and LEA agents to be able to sufficiently accurately estimate the

value of a coalition (Figure 6.1), they have to be able to estimate how a chosen learning

action and the types of the learner and teacher agent are going to change its own type and

the types of its coalition members. In our implementation, the agents’ type change through

implicit and explicit learning actions is determined by Equation 6.27. When the learning

probability uncertainty (ℵ2 in Equation 6.27) is high, the majority of the outcomes of the

agents’ learning actions are varied (positively or negatively) randomly with the learning

variation constant (εθ).

This random variation would make it difficult for the agents to sufficiently accurately

estimate the impacts of their learning actions. Without this estimation, the agents should not

be able to improve their types since they will not be able to choose the appropriate learning

action. By failing to improve their types, the OSL and the LEA agents would consequently
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fail to improve their utility using the task vs. future task reward tradeoff. To understand

how the OSL and LEA agents are able to achieve that type change, we further investigate

the type of learning the OSL and LEA agents use. Figure 6.18 and Figure 6.19 show that

over time, LEA and OSL agents learn to prefer the Discussion learning action and None

learning action for high learning probability uncertainty. Note that the LEA agents switch

to the Discussion and None learning more abruptly than the OSL agents. Closer analysis

of our data reveals that the LEA agents are able to keep their utility gain high (p < 0.05)

even in the face of higher learning probability uncertainty until the uncertainty reaches 0.8.

Beyond the value of 0.8, a larger number of LEA agents (90% in LEA as opposed to 80%

in OSL) switch to the Discussion and None learning actions. Whereas between [0.7− 0.9]

learning probability uncertainty values, the OSL agents, who have limited exploration ca-

pabilities compared to LEA, gradually (30% of the agents over the learning probability

uncertainty values [0.7 − 0.9]) increase their Discussion and None learning actions. Now,

according to our chosen order of cost and effectiveness (Equation 6.25), the Discussion

learning action has the lowest cost among all learning actions whose outcome (in terms ex-

pertise improvement) depend on the learner-teacher expertise difference (Equation 6.27). If

an agent learns from a teacher agent who has higher expertise, even if the learning outcome

is chosen randomly (when learning probability uncertainty is high), the overall learning

outcome remains beneficial to the learner. That is because, in our implementation, our cho-

sen Learning Variation Constant (εθ in Table 6.2) for random learning is 1 and the learning

outcome is proportional to the expertise difference. So, a learner can improve its type by

choosing a teacher whose expertise is higher (> 1) than its own even when the learning

probability uncertainty in the environment is high. If the learner agents cannot find such

a teacher (e.g., if the learner already has high expertise), they would not engage in learn-

ing. In that case, the number of agents not learning will increase which is also evident

in Figure 6.18 and Figure 6.19. Our results show that, Learning Variation Constant (εθ in

Table 6.2) is small, by finding and exploiting the underlying type change dynamics, the
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OSL and LEA agents are able to improve their utility over time by overcoming the learning

uncertainty in the environment.

Figure 6.15: Total Utility of Agents for Varying Learning Probability Uncertainty Values.

Task Solution Quality Uncertainty

Figure 6.20 shows that as the task solution quality uncertainty is increased, the OSL, LEA,

and the MCT-TSL agents’ earned utility is reduced. We see that for medium or high task

solution quality uncertainty values, i.e., if ℵ1 > 0.4, the OSL, LEA, and the MCT-TSL

agents achieve a lower utility than the baseline MCT+TSL agents. As described in Equa-

tion 6.23, the task solution quality uncertainty value ℵ1 determines the percentage of tasks

whose outcomes are determined at random. When the task solution quality uncertainty is

determined randomly, the output of a task is and thus the reward earned by the agents is

not dependent on the types (i.e., the expertise values of the relevant capabilities) of the

coalition members. Due to such random task solution quality selections, the agents have

difficulty learning the task solution quality dynamics (Equation 6.23), i.e., the mapping



www.manaraa.com

166

Figure 6.16: Total Weighted Agent Type Count (Interface Designer+Programmer+System
Engineer) (Equation 6.28) for Varying Learning Probability Uncertainty Values.

of the coalition members’ types to the task solution quality. As a result, when the agents

determine the value of a coalition in the coalition formation round (Algorithm 6.1), the

MCT-TSL (Equation 6.10), the OSL (Equation 6.11), and the LEA (Equation 6.12) agents

cannot accurately calculate the value of a coalition in terms of the current-task reward it

may provide. Consequently, those agents then choose to form coalitions that yield a low

reward, e.g., choose agents with low expertise for a task that requires high expertise. This

is evident for the OSL and LEA agents when we compare Figures 6.21-6.23. Figure 6.21

shows that the OSL and LEA agents are able to achieve statistically significantly (p < 0.05)

higher types compared to the MCT-TSL agents and incur the cost of learning (Figure 6.22).

However, Figure 6.21 shows that, despite having improved types, the OSL and LEA agents

achieve statistically significantly (p < 0.05) lower task solution quality than the MCT-TSL

agents for task solution quality uncertainty values > 0.4. This indicates that, for high task

solution quality uncertainty values, the OSL and LEA agents improve their types, pay the
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Figure 6.17: Total Weighted Agent Type Count (Interface Designer+Programmer+System
Engineer) (Equation 6.28) for Varying Learning Probability Uncertainty Values.

cost of learning, but cannot get high rewards. Equation 6.23 shows that the task solution

quality of a coalition in our implementation is determined by its members’ types and the

uncertainty of the environment. Since the OSL and LEA agents have improved types, their

lower reward indicates that those agents could not choose coalitions that can provide good-

enough rewards for the current task, i.e., those agents are not able to take advantage of

the current-task vs. future-task reward tradeoff. This indicates a potential for improving

the OSL and LEA agents’ performances by improving those agents’ learning of the task

solution quality dynamics of the environment. If the OSL and LEA agents are able to more

accurately estimate the task solution quality uncertainty value of the environment, they

could be more careful about improving their types since such type changes are not going to

lead to higher rewards in the future. We discuss how we are planning to improve the OSL

and LEA agents’ learning of the environment dynamics in our future works (Section 6.8).
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Figure 6.18: Learning Action Count Difference (Teaching+Apprenticeship+Observation-
[Discussion+None]) of OSL Agents for Varying Learning Probability Uncertainty Values.

Learning Cost

Figure 6.24 shows the total utility earned by the agents over the tasks for varying learn-

ing cost proportionality constant (Equation 6.1). Here, by varying the learning cost con-

stant (Equation 6.1), we increase the cost of learning proportionally maintaining the order

of impact and cost presented in Equation 6.26. Figure 6.24 shows that for low learning

costs (learning cost proportionality constant [1, 15]), the OSL and LEA agents are able to

earn statistically significantly higher (p < 0.05) utility than the MCT+TSL and MCT-TSL

agents. However, as the learning cost is increased, that utility advantage gained by the OSL

and LEA agents diminishes and for learning costs proportionality constant 50, the LEA

and OSL agents earn lower utility than the MCT+TSL and MCT-TSL agents. The OSL

and LEA agents’ failure to achieve higher utility can be explained from the point of view

of their inability to optimize their type changes.

Figure 6.25 shows the agents’ total weighted agent type count (Equation 6.28) for vary-

ing learning costs whereas Figure 6.26 shows the number of learning actions of the OSL

and LEA agents for varying learning cost proportionality constants. Combining Figure 6.25
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Figure 6.19: Learning Action Count Difference (Teaching+Apprenticeship+Observation-
[Discussion+None]) of LEA Agents for Varying Learning Probability Uncertainty Values.

and Figure 6.26, we see that, as the cost of implicit and explicit learning increases, the OSL

and LEA agents reduce their learning actions and consequently achieve lower types. This is

expected, since the OSL and LEA agents’ choice of the coalitions and their learning actions

depend on their evaluation of the current task and future task reward tradeoff (Equation 6.11

and Equation 6.12). That is, if the learning cost is very high, the OSL and LEA agents see

that the type improvement does not justify the high learning cost they are incurring. Con-

sequently, those agents reduce their use of learning actions and achieve lower types. That

reduced type then prevents the OSL and LEA agents from achieving higher utility than

the MCT agents. Notice that the OSL and LEA agents’ ability to reduce their learning

actions in the face of high learning cost indicates that these agents can adapt to the high

learning cost of the environment. However, without any learning actions, one might ex-

pect that the OSL and LEA agents would achieve utility values similar to the MCT agents.

The fact that the OSL and LEA agents earn a somewhat lower utility (Figure 6.24) can be

attributed to the agents’ exploration behavior in the ADLIT environment. Since the OSL

and LEA agents (especially the newcomer agents introduced due to agent openness) have
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Figure 6.20: Total Utility of Agents for Varying Task Solution Quality Uncertainty.

to learn the type change dynamics (Equation 6.27) by engaging in implicit and explicit

learning actions, their initial exploration-before realizing that it is not worthwhile to do

so-of the impacts of their learning actions reduces their utility which manifests in the lower

utility over all tasks. This observation thus encourages us to seek algorithms or strategies

that would allow the OSL and LEA agents to learn the dynamics of the environment more

efficiently (see Section 6.8).

6.6.3 Scalability

Here we investigate how the length of the coalition formation round and the neighborhood

size (Section 6.2) impact the OSL and LEA agents’ ability to earn higher utility.

Impact of Length of Coalition Formation Round on Agents’ Utility

Figure 6.27 shows the average (over all tasks) total utility of the agents for varying length

of the coalition formation round (in number of simulation ticks) for the chosen simulation
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Figure 6.21: Total Weighted Agent Type Count (Interface Designer+Programmer+System
Engineer) (Equation 6.28) for Varying Task Solution Quality Uncertainty.

seed values (Table 6.2). Figure 6.27 shows an absence of any statistically significant trend

that would indicate the difference in time spent by the OSL and LEA agents while choos-

ing coalitions and their total utility. This means that the OSL and LEA agents can retain

the performance improvement-fueled by type changes via learning actions-by entertaining

a relatively small number of coalition proposals while forming coalitions. Thus, the re-

sults here suggest that when the implicit and explicit learning based type change is used to

improve the agents’ performance; the agents do not have to rely on searching through the

exponential number of coalition choices to improve their performances over time. This fur-

ther implies that, even when we have a large number of agents in the ADLIT environment,

it would be possible to limit the total time spent by the agents while they are deliberating

which coalition to join. This lessened dependency on the time spent thus indicates the scal-

ability of the coalition formation protocol and the approximation strategies (OSL and LEA)

in ADLIT.
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Figure 6.22: Total Learning Cost of the OSL and LEA Agents for Varying Task Solution
Quality Uncertainty.

Impact of Neighborhood Size on Agents’ Utility, Reasoning Time, and Memory Usage

Figure 6.28, 6.29, and 6.30 show the average (over all tasks) total utility earned, the to-

tal reasoning time spent, and the total memory (heap space in Java virtual machine) used,

respectively, by the OSL and LEA agents for varying neighborhood sizes. We see that

although increasing the neighborhood size increases the time and memory requirements,

beyond the value of 6, the neighborhood size increase does not provide any statistically

significant (p < 0.05) increase in their total utility. Notice that although Figure 6.28 shows

a slightly negative trend in the decrease of the utility of the OSL agents as the neighborhood

size increases, that decrease is not statistically significant (p < 0.05). So, Figure 6.28, 6.29,

and 6.30 indicate that the OSL and LEA agents can earn the type changes and improve-

ments in their utility over time by deliberating over a relatively small number of potential

coalition-forming choices (29× 360 as opposed to 260). The explanation of the results here

is again similar to our discussions in Section 6.6.3. Beyond neighborhoods of size 6, the
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Figure 6.23: Total Task Solution Quality for Varying Task Solution Quality Uncertainty.

OSL and LEA agents are able to find the necessary implicit and explicit learning opportuni-

ties to obtain type changes that allow them to earn higher utility over time. Notice that, we

do not claim that it is not possible to earn higher rewards for very large neighborhoods, e.g.,

20. For such a large neighborhood, the agents would have to deliberate over an exponential

number of coalitions and implicit and explicit learning choices (220 × 360 as opposed to

29×360). However, due to the task solution- and learning outcome- related uncertainties in

the environment, deliberating over such a large number of choices will not guarantee that

the agent will be able to achieve (1) a type change that leads to high task solution quality

for future tasks or (2) a high task solution quality for the current task. Furthermore, the

consideration of such a large number of choices would make the system not usable for any

large-scale real-world coalition formation scenarios. So, our results here indicate that our

OSL and LEA strategies may allow the agents to earn higher utility over time through type

change without having to consider an exponential number of possible coalitions and im-

plicit and explicit learning action choices. Although not definitive, the results here provide
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Figure 6.24: Total Utility of Agents for Varying Learning Cost Proportionality Constant.

evidence that the coalition formation protocol and the approximation strategies can be used

for solving large-scale real world problems.

6.6.4 Summary

The analysis of our results can be summarized as the following:

Feasibility and Impact:

• The coalition formation protocol and the approximation strategies enable the agents

to statistically significantly improve their types over time by choosing the implicit

and explicit learning actions.

• Due to the agents’ deliberate exploitation of the current-task vs. future-task reward

tradeoff resulting from their type change, all agents using our OSL and LEA approx-

imation strategies are able to improve their earned utility (statistically significantly)

over time.
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Figure 6.25: Total Weighted Agent Type Count (Interface Designer+Programmer+System
Engineer) (Equation 6.28) for Varying Learning Cost.

• The frequentist learning approach allows the agents to estimate the dynamics of the

environment sufficiently accurately. The agents’ estimation of the dynamics then

enables them to choose the appropriate coalition members and implicit and explicit

learning actions that lead to the statistically significantly higher performance over

time.

• An aggressive exploration of the implicit and explicit learning actions allow the

agents to reduce the learning cost they incur and over time leading to more efficient

type improvement.

Robustness:

• The agents using the OSL and LEA strategies are able to exploit the current task vs.

future task reward tradeoff when the task openness is low < 0.5. For higher task

openness, the agents’ fail to achieve any performance improvement over the agents
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Figure 6.26: Total Number of Learning Actions for Varying Learning Cost Proportionality
Constant.

who do not improve their types for exploiting the current task vs. future task reward

tradeoff.

• The agents’ local decision of improving their own types and the types of their coali-

tion members leads to a globally emergent type improvement of the agents. That type

improvement then allows the OSL and LEA agents to earn statistically significantly

higher utility overcoming even very high agent openness values.

• If the task solution quality uncertainty is high, the ADLIT agents’ use of implicit and

explicit learning and type change fail to achieve any performance improvement over

the agents who do not improve their types for exploiting the current task vs. future

task reward tradeoff.

• ADLIT’s coalition formation protocol and the approximation strategies enable the

agents to overcome high learning probability uncertainty by finding the most efficient

implicit and explicit learning actions for type change.
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Figure 6.27: Total Utility of Agents for Varying Length of Coalition Formation Rounds.

• When the learning cost is high, the OSL and LEA agents reduce their learning actions

where that reduction prevents them from optimizing their types. As a result, the OSL

and LEA agents fail to improve their utilities over the MCT agents.

Scalability:

ADLIT agents’ ability to exploit the current task vs. future task reward tradeoff by improv-

ing their types is not constrained with: (1) the number of potential coalitions and learning

action choices they consider or (2) the amount of time they spend communicating or co-

ordinating with other agents for choosing their coalition and learning action choices. The

agents’ independence from the potentially large number of coalition members and learning

action choices suggest that our approach of agents’ performance improvement through type

change could be scaled up to large coalition formation problems.
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Figure 6.28: Total Utility Earned by the Agents during Coalition Formation for Varying
Neighborhood Size.

6.7 Conclusions

We have defined and implemented the ADLIT framework for forming agent coalitions in

uncertain environments where the agents’ types change due to their participation in the

implicit and explicit learning actions with the coalition members. We have described the

ADLIT framework with a set of assumptions that formally define our environment’s critical

aspects: (1) the task and agent openness and (2) the dynamics of the environment that

determines (a) the type change of the agents and (b) the reward earned by an agent coalition.

For the agents in the ADLIT framework, we have defined a coalition formation protocol

that allows the agents to join coalitions that provide them good-enough current task rewards

as well as choose implicit and explicit learning actions that change their own types and

more importantly, the types of their coalition members. That type change then increases

the agents’ utility of the future tasks over time. Furthermore, in the ADLIT framework, we

have provided two approximation strategies: (1) One-Step Lookahead (OSL) strategy and

(2) Learning by Exploration (LEA) strategy. The ADLIT agents use these approximation

strategies to evaluate the values of the coalitions in terms of the current task vs. future task
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Figure 6.29: Average Memory Used by the Agents during Coalition Formation for Varying
Neighborhood Size.

reward tradeoffs they are going to provide.

To test the validity of the coalition formation protocol and the approximation strategies

of our ADLIT framework, we have implemented ADLIT in an agent-based simulation en-

vironment called Repast and have conducted an extensive set of experiments. The analysis

of the results of our experiments shows the following. First, our results show that our de-

signed coalition formation protocol and the OSL and LEA strategies enable the agents to

deliberate over their current task vs. future task reward tradeoff and earn statistically signif-

icantly higher utility by changing their own types and the types of their coalition members.

Second, our results show that the OSL and LEA strategies’ effectiveness in improving

the agents’ utility is negatively impacted by the high learning cost and high uncertainty and

openness associated with the task-solving ability of the agents. However, the OSL and LEA

strategies allow the agents to withstand, to some extent, the uncertainty associated with the

agents’ ability to change their types and agent openness. Finally, our results indicate that

while forming coalitions, it is possible for the OSL and LEA agents to achieve statistically

significantly higher utility gain even when they deliberate over a relatively small number
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Figure 6.30: Average Reasoning Time Required by the Agents during Coalition Formation
for Varying Neighborhood Size.

of potential coalition choices and implicit and explicit learning actions.

To conclude, our results indicate that the type change due to implicit and explicit learn-

ing of the agents can be used as an effective strategy to improve their performances in an

open and uncertain environment. This is especially true when the agents not only change

their own types but the types of their coalition members such as the learning effects that

occur when humans work in a coalition. As the multiagent coalition formation research

progresses and is used to solve real-world coalition formation problems where software

and human agents work symbiotically, this power of implicit and explicit learning can be

the key to achieving practical and useful solutions.

6.8 Future Work

We plan to extend the ADLIT coalition formation protocol and approximation strategies

to consider the impact of a learner agent’s learning on the teacher agents’ type change.

In the current formulation of the ADLIT framework, when a coalition member is learning
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from one of its coalition members, only the learner agent’s types are updated. In future,

we would like to incorporate the possibility that when a learner and teacher agent engages

in learning interactions, the type of the teacher agent may change too (e.g., learning by

teaching described in (Inaba et al., 2000)). Furthermore, we plan to investigate the feasi-

bility of using the existing research of Stone and Kraus (2010) in ADLIT Framework. To

be specific, following the researchers’ approach, we plan to formulate an ADLIT agent’s

deliberation over whether to engage in teaching and learning interactions with its coalition

members as a k-armed bandit problem. Then, based on the expected utility improvement

calculated from the solution of that problem, the ADLIT agents would decide which im-

plicit or explicit learning action they would choose.

In addition, we plan to improve the learning strategies used by the agents in ADLIT to

allow the ADLIT agents better overcome the detrimental aspects of the environment, e.g.,

openness of the environment, learning cost, and the uncertainty. First, notice that due to

agent openness, some of the agents are replaced with new agents over time. These agents

do not have any way of estimating the task solution quality dynamics or the agent type

change dynamics (Section 6.4.5). So, we plan to change the coalition formation proto-

col so that an agent can use multiagent cooperative learning (Panait and Luke, 2005) to

exchange their learned probability values (regarding the environment dynamics) and learn

from one another. Such cooperative learning would enable the agents to improve their esti-

mations more efficiently (i.e., with less number of observations) leading to higher utilities

over time. Second, we plan to test the impact of using reinforcement learning mechanisms

designed for uncertain environments on the ADLIT agents’ learning capabilities. For exam-

ple, Lauer and Riedmiller (2004) describe how a set of agents can use their reinforcement

learning approach to learn the value of reward functions in uncertain environments. This

reinforcement learning approach can be easily adopted by the ADLIT agents to further

improve their estimations of the task solution quality dynamics and the agent type change

dynamics. This improvement may then help the agents overcome the negative impact of the
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uncertainties (e.g., associated with the task solution quality dynamics) in the environment

better. Finally, in our future work, we plan to explore how the ADLIT agents’ coalition

formation protocol and the approximation strategies impact the agents’ performances in

high-risk environments. In high-risk environments, such a wrong choice may result in a

bigger loss, e.g., a complete loss of their expertise or a very high penalty in the current task

reward. We plan to investigate the performance of the ADLIT agents for increasing penalty

(in terms of agents’ type change and earned reward for the current task) for their choices of

coalition member types and implicit and explicit learning actions.
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Conclusions & Future Work

Here we first summarize our conclusions discussed in Chapter 5, Chapter 4, and Chap-

ter 6 in Section 7.1 and then summarize our future work presented in those chapters in

Section 7.2.

7.1 Conclusions

In our research, we have proposed a solution for the MCFP problem where a set of intelli-

gent agents form coalitions and interact among themselves to solve tasks. The environment

of MCFP coalition formation problem is uncertain and the types of the agents (i.e., their

skills in terms of solving the tasks) may change (positively or negatively) over time. Since

intelligent agents are now being used to act as mediators to form human coalitions, we have

divided our MCFP problem into two subproblems: MCFP-A and MCFP-M. In MCFP-M,

a set of mediator agents form or join coalitions on behalf of their assigned human users

(actors in the coalitions) so that those human users are able to solve the current task well

and improve their types to solve future tasks better. In MCFP-A, a set of actor agents

form or join coalitions to solve the current tasks well and improve their types optimally

to maximize their rewards over time. To solve MCFP-M problem, we have proposed the

iHUCOFS framework and to solve MCFP-A, we have proposed the ADLIT framework for
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coalition formation.

iHUCOFS (Khandaker and Soh, 2008; Soh and Khandaker, 2007) is a multiagent-based

coalition formation framework in which a set of intelligent agents assist a set of human

users form coalitions and scaffold those human users to optimize their effectiveness and ef-

ficiency in the coalitions over a set of tasks. To understand the validity and implications of

iHUCOFS framework, we have designed SimCoL (Khandaker and Soh, 2010d) - a simu-

lation environment in which a set of agents, guided by the published collaborative learning

theories and observations, mimic the collaborative learning interactions of the students in

a classroom. To instantiate iHUCOFS, we have designed the MHCF algorithm (Chapter 3)

that uses a negotiation-based multiagent coalition formation algorithm and a Bayesian net-

work to learn the composition of student groups that would allow the members to solve the

current task well as well as improve their behavior to earn higher rewards for future tasks.

To investigate the impact of MHCF algorithm, we have designed and implemented Class-

roomWiki (Chapter 5)—an asynchronous online Wiki environment. Using ClassroomWiki,

we have conducted experiments in several University of Nebraska - Lincoln courses where

the students collaborated using ClassroomWiki to prepare Wikis on advanced topics and

the mediator agents used the MHCF algorithm to form student groups. Our findings in the

SimCoL (Chapter 4) and ClassroomWiki experiments (Chapter 5) can be summarized in

the following way:

• SimCoL (Khandaker and Soh, 2010d)

– Although preliminary, our results indicate that by utilizing the critical learning-

related attributes of the students and the collaborative learning interaction the-

ories proposed by researchers, it is possible to closely mimic the collaborative

learning interactions and outcomes of the students in a CSCL classroom. We

envision that our findings with this simulation toolkit will enable other CSCL

and multiagent researchers to bridge the gap between theory and applications

with low-cost replicable simulation experiments.
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– Our results indicate that, the composition of student groups have a significant

impact on the students’ learning outcomes. This result encourages us to further

refine iHUCOFS’ group formation algorithms which could then have a positive

impact on the real-world CSCL systems.

– Our results also show that, using agent-based scaffolding, it is possible to posi-

tively influence the performances of the student coalitions in the CSCL environ-

ment. Since learning is present in a large variety of real-world problems (e.g.,

employee training in a business environment), we feel that our simulation re-

sults will encourage other researchers to use intelligent agent based scaffolding

as a valid method of improving the performances of human users in collabora-

tive settings in general.

• ClassroomWiki (Khandaker and Soh, 2010a,b,c)

– Our results in ClassroomWiki show the strength of intelligent agents in terms

of modeling the human users and overcoming the uncertainties in the environ-

ment with probabilistic reasoning. This performance of probabilistic modeling

and reasoning of the agents will pave the way for future researchers who would

apply multiagent coalition formation techniques to track and model human par-

ticipant’s performances in collaborative work settings.

– Our results show that the iHUCOFS’ realization in the MHCF algorithm is able

to significantly improve the performances of human users by enhancing their

learning abilities with better student groups. We envision that this improvement

achieved by multiagent coalition formation techniques will further establish its

usefulness in solving real-world coalition formation problems.

– The positive impact of MHCF algorithm’s group formation abilities validates

the importance of the scaffolding (implicit) provided by the mediator agents.

Although explicit scaffolding has been used by researchers (e.g., Intelligent
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Tutoring Systems) we believe that in future, our findings here will encourage

the multiagent and CSCL researchers to use implicit scaffolding as an efficient

way of improving the performances of human coalitions.

To solve MCFP-A, we have proposed the Agents’ Dyadic Learning Influenced Tradeoff

(ADLIT) Framework (Chapter 6) in which a set of learning-enabled agents form coalitions

in an uncertain environment and collaborate to solve tasks to earn rewards. In this setting,

the agents in ADLIT take a good-enough, soon-enough approach and negotiate to join a

coalition and select a set of learning and teaching actions that (1) improve the long-term

reward gain by changing its type and its coalition members’ types through learning and

scaffolding and (2) allow it to earn good-enough short-term reward (including the cost of

learning). In ADLIT, we have proposed a limited lookahead algorithm in which he agents

take a myopic approach to obtain a limited lookahead in the future and choose the coalition

and learning and scaffolding actions to form coalitions. Furthermore, we have proposed

a learning by exploration algorithm in which the agents balance their exploration and ex-

ploitation to learn how to form coalitions that allow the agents to improve their perfor-

mances and optimize their rewards. To understand the impact of our designed algorithms,

we have implemented them in a simulation environment and conducted extensive simula-

tion experiments. Our findings of those experiments can be summarized in the following

way:

• MCFP-A (Khandaker and Soh, 2011a)

– Our results indicate that by harnessing the type-changing influences of the

agents’ learning and teaching abilities, it is possible to optimize the types of the

agents and maximize their performances (w.r.t. their types) over time. Here,

the improvements in the agents’ performances come not only from improving

their own types but the types of their coalition members. Since it is possible

for the agents to improve their own performances by influencing changes in
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other members’ types, we believe that, this technique will enhance the existing

multiagent coalition formation solution techniques in the uncertain and type-

changing environments.

– Our results show that by exploiting the learning and teaching abilities of the

agents, it is possible to overcome the detrimental aspects of the environment

(e.g., openness, uncertainty, partial observability) to a great extent. Since the

real-world coalition formation problem environments often contain these detri-

mental aspects, we envision that our findings will significantly help the multi-

agent researchers who would like to apply theoretical multiagent coalition for-

mation techniques to solve real-world agent coalition formation problems.

– Our results also indicate that the agents’ use of learning and teaching actions

for improving their types is not affected by the scale of the multiagent coalition

formation problem it is used to solve. This finding is of great significance since

it suggests the applicability of our exploitation of teaching and learning actions

towards improving the solutions of large-scale multiagent coalition formation

problems.

7.2 Future Work

Our future work regarding our proposed solution of the MCFP-M problem involves the fol-

lowing. First, we plan to improve the multiagent tracking and modeling capabilities of the

mediator agents so that they are able to model the performances of the participating human

users better. We also plan to improve our realization of the MHCF algorithm for human

coalition formation by adding explicit scaffolding capabilities of the mediator agents. Fur-

thermore, we plan to conduct several large-scale CSCL experiments using MHCF to better

understand its ability of improving the performances of student groups. We also plan to

expand the use of MHCF algorithms beyond just classroom collaboration scenarios. To be
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specific, we plan to apply MHCF for human collaboration or coalition formation scenarios

where the human users change their types through learning and where agent scaffolding

and group formation is relevant. Examples of such collaboration environments include,

just-in-time coalition formation for problem solving in social networking sites (e.g., fund

raising for earthquake victims in Haiti through facebook), and effective coalition formation

among the users for problem solving in crowdsourcing (Brabham, 2008)

Our future work regarding our proposed solution of the MCFP-A problem involves

improving the agents’ learning of the environment dynamics with more robust learning

algorithms. Such improvements would allow the agents to better evaluate the tradeoff

between current and future task performances and improve their types optimally in the

face of detrimental environmental aspects. We plan to further study the performances of

the MCFP-A framework with extensive empirical studies. In those future studies, we will

implement ADLIT framework in other real-world multiagent coalition formation scenarios

(e.g., uncertain coalition formation in large-scale electronic markets (Lerman and Shehory,

2000)) where the type change of the agents may play a significant role in improving the

performances of the coalitions.
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Appendix A

Wiki Rating Survey

Questions are in Likert Scale [1, 5] (Strongly Disagree, Disagree, Neutral, Agree, Strongly
Agree).

1. The interface of ClassroomWiki was user-friendly.

2. ClassroomWiki’s functionalities (forum, revision) helped us work as a group better.

3. It was easy to revise our group’s topic using ClassroomWiki’s revision tool.

4. It was easy to keep track of our group members’ revisions using ClassroomWiki’s
revision tool.

5. It was easy to communicate with my group members using ClassroomWiki’s forum.

6. Help was available in the form of help documents/technical support when technical
problems occurred.

7. ClassroomWiki is a better tool for group writing than Blackboard’s wiki.

8. Additional comments/suggestions on the usefulness of ClassroomWiki as a group
writing tool.

9. Additional comments/suggestions about how we can improve the functionalities Class-
roomWiki in future.
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IRB Student Consent Form

Informed Consent Form

Identification of Project: Online Collaborative Software Educational Evaluation
(IRB#2003-05-281 EP)

Purpose of the Research: Computer-supported collaborative learning allows the partic-
ipants to communicate and collaborate together to learn from each other using computer
software (e.g. text chat, Wiki, webcams, whiteboards). The purpose of this study is to
investigate how the various aspects of the behavior of a student and the behavior of his or
her group members could improve student learning in a computer-supported cooperative
learning environment.

Procedures: This evaluation will involve several interactive collaborative learning ses-
sions. Each session will take approximately 2 hours. The students will be able to join these
sessions online using computer-supported collaborative learning software. The students
can join these sessions from any computer in the University of Nebraska Lincoln campus
or from a computer with internet connection at home.

Risks and/or discomforts: There is little or no risk involved in the project.

Benefits: This should be an interesting learning experience in a computer-supported course
as students get to interact with each other in task-based groups and perform structured
cooperative learning activities. Some students will get to experience with an online tool for
collaboration.

Confidentiality: Your name and identity will be coded on all software-related test forms.
Your name will be kept as a basis of validating your participation in all sessions. Once the
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sessions are complete, all records tying your code to your name will be destroyed from our
online collaborative software project database.

The instructor will not know who is participating in the study until after the course is over
and the grades are turned in.

Opportunity to Ask Questions: You have the right to ask questions prior to agreeing
to participate and while participating. Please address questions to the CSE office, 402-
472-6738, during office hours. If you have questions concerning your rights as a research
subject that have not been answered by the investigator, you may contact the University of
Nebraska-Lincoln Institutional Review Board, telephone (402) 472-6965.

Please initial here to indicate that you have read this page: 2

Freedom to Withdraw: You are required to participate in the lab activities and the use
of online collaborative software as part of the course requirement. However, you are free
to choose whether to allow data that we collect specifically from you to be used in our
analysis. Your decision to allow us to use the data will draw no other consequences or loss
of benefits or privileges as a student at UNL. Your decision to allow us to use the data will
in no way affect your grade in the course.

Consent, Right to Receive a Copy: You are voluntarily making a decision whether or
not to participate in this research study. Your signature certifies that you have decided to
participate having read and understood the information presented. Your will be given a
copy of this consent form to keep.

Name: — Date: —

Signature: —

2 Check here if you are under 19 years old. (If you check the above, we will give you a
parental consent form for your parent to read and sign.)

Principal Investigator: Leen-Kiat Soh
Address: CSE, 256 Avery Hall
CSE Office Phone: 402-472-6738
E-mail: lksoh@cse.unl.edu

mailto:lksoh@cse.unl.edu
lksoh@cse.unl.edu
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Appendix C

IRB Parental Consent Form

PARENTAL INFORMED CONSENT FORM
IRB # 2003-05-281 EP

Online Collaborative Software Educational Evaluation

You are invited to permit your child to participate in this research study. The following
information is provided in order to help you to make an informed decision whether or not
to allow your child to participate. If you have any questions please do not hesitate to ask.

Your child is eligible to participate in this study because your child enrolls in a UNL-offered
course that uses technology to help teach the class. Your child will also be asked if he/she
is willing to allow his/her participation data be used in the study.

Computer-supported collaborative learning allows the participants to communicate and col-
laborate together to learn from each other using computer software (e.g. text chat, web-
cams, whiteboards). The purpose of this study is to investigate how the various aspects
of the behavior of a student and the behavior of his or her group members could improve
student learning in a computer-supported collaborative learning environment. Specifically,
this evaluation will involve several interactive collaborative learning sessions. Each syn-
chronous session will take approximately 1-2 hours while an asynchronous session is open-
ended. Your child will be able to participate in these sessions online using computer-
supported collaborative learning software. Your child can join these sessions from any
computer in the University of Nebraska Lincoln campus or from a computer with internet
connection at home.

Your child, as a student of the course that participates in the online collaborative software
educational evaluation, is required to attend and participate in these activities. However,
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your child, and you as the parent, has the freedom to choose not to allow data that we collect
specifically from your child (hence forth “participation data”) to be used in our evaluation
and analysis.

There are no known risks associated with this research.

This should be an interesting learning experience in a computer-supported course as stu-
dents get to interact with each other in task-based groups and perform structured coop-
erative learning activities. Some students will get to experience with an online tool for
collaboration.

Any information obtained during this study which could identify your child will be kept
strictly confidential. The information obtained in this study may be published in scientific
journals or presented at scientific meetings, but your child’s identity will be kept strictly
confidential.

2 Parent’s Initials (Page 1 of 2)

Your child’s rights as a research subject have been explained to you. You have the right
to ask questions prior to agreeing to participate and while participating. Please address
questions to the CSE office, 402-472-6738, during office hours. If you have any questions
concerning your child’s rights as a research subject that have not been answered by the
investigator, or to report any concerns about the study, you may contact the University of
Nebraska-Lincoln Institutional Review Board, telephone (402) 472-6965.

You are free to decide not to allow us to use your child’s participation data without ad-
versely affecting their or your relationship with the investigator or the University of Nebraska-
Lincoln. Your decision will not result in any loss of benefits to which your child is other-
wise entitled.

The instructor will not know who is participating in the study until after the course is over
and the grades are turned in.

DOCUMENTATION OF INFORMED CONSENT

YOU ARE VOLUNTARILY MAKING A DECISION WHETHER OR NOT TO AL-
LOW YOUR CHILD TO PARTICIPATE IN THE RESEARCH STUDY. YOUR SIGNA-
TURE CERTIFIES THAT YOU HAVE DECIDED TO ALLOW YOUR CHILD TO PAR-
TICIPATE HAVING READ AND UNDERSTOOD THE INFORMATION PRESENTED.
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YOU WILL BE GIVEN A COPY OF THIS CONSENT FORM TO KEEP.

Child’s Name —

Signature of Parent —- Date —

IDENTIFICATION OF INVESTIGATORS

PRIMARY INVESTIGATOR

Principal Investigator: Leen-Kiat Soh
Address: CSE, 256 Avery Hall
CSE Office Phone: 402-472-6738
E-mail: lksoh@cse.unl.edu Page 2 of 2

mailto:lksoh@cse.unl.edu
lksoh@cse.unl.edu

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Spring 5-6-2011

	MULTIAGENT COALITION FORMATION IN UNCERTAIN ENVIRONMENTS WITH TYPE-CHANGING INFLUENCES AND ITS APPLICATION TOWARDS FORMING HUMAN COALITIONS
	Nobel A. Khandaker

	Introduction
	Motivation
	Solution Approach
	Contributions
	Outline

	Related Work
	Critical Aspects of Problem Environment
	MCFP-M Coalition Formation Problem
	MCFP-A Coalition Formation Problem

	MCFP-M: iHUCOFS Framework
	Assumptions
	Design Principles
	MHCF Algorithm
	Environment
	MCFP-M Problem
	MHCF Algorithm for Coalition Formation

	Learning for Coalition Formation
	Learning Problem
	Bayesian Cooperative Learning
	Use of a Bayesian network

	Implementation in SimCoL and ClassroomWiki

	MCFP-M: SimCoL
	Categories of Student Learning
	Individual Learning
	Peer-Based Learning
	Collaborative Learning
	Scaffolding

	Simulation Environment & Algorithms
	Task
	Simulated Student
	Teacher
	Assistant Agents
	Collaboration and Scaffolding

	Implementation
	Results
	Collaboration among Learners
	Compound Impact Analysis
	Impact of Group Formation Method
	Cost and Impact of Scaffolding
	Validity and Correlation with CSCL Results

	Conclusions
	Future Work

	MCFP-M: ClassroomWiki
	ClassroomWiki Architecture
	Wiki Module (WIM)
	Communication Module (COM)
	Tracking and Modeling Module (TAM)
	Information tracked by Agent ai for Student si
	Student Model in ClassroomWiki

	Implementation
	Wiki Module (WIM)
	Communication Module (COM)
	Tracking and Modeling Module (TAM)
	Group Formation Module (GFM)

	Experiment Setup
	HIST 202 Deployment
	CSCE 475 Deployment
	ENGL 180 Deployment
	GEM Deployment
	WMNS 101 Deployment

	Results
	User Acceptance
	Overall Student Performance and Collaboration
	Impact of MHCF Group Formation
	Composition of Formed Student Groups
	Impact of Multiagent Tracking and Modeling

	Conclusions
	Future Work

	MCFP-A: ADLIT Framework
	ADLIT Framework
	Assumptions
	Environment
	Coalition
	Individual Reward and Utility
	Reward Tradeoff
	ADLIT Coalition Formation Problem

	Coalition Formation Protocol
	Computational Approximations
	Myopic Current Task Strategy (MCT)
	One-Step Lookahead Strategy (OSL)
	Learning by Exploration Strategy (LEA)
	Frequentist Learning of Environment Dynamics

	Implementation
	Coalition Formation Environment Overview
	Randomization in the Simulation Environment
	Task Solution Quality Dynamics
	Coalitional and Individual Reward
	Implicit and Explicit Learning Actions
	Impact and Cost of Learning
	Type Change Dynamics
	Implementation in Repast Simulation Environment
	Openness of the Environment

	Experiment Setup
	Results
	Feasibility and Impact
	Robustness
	Scalability
	Summary

	Conclusions
	Future Work

	Conclusions & Future Work
	Conclusions
	Future Work

	Bibliography
	Wiki Rating Survey
	IRB Student Consent Form
	IRB Parental Consent Form

